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PREFACE

The problem of turbulence in general, and of turbulent boundary

layers in particular, has recently become very important in view of

its increasing practical significance.
a

Due to the intensive development of aerospace technology,

power plant technology, and other branches of technology,

scientists and engineers have become particularly interested in

problems related to supersonic flow of homogeneous and inhomogeneous

gases in a turbulent boundary layer. A flow at supersonic velocities

in many cases results in such an extreme increase of the temperature

of the gas that thermochemical processes begin to take place in it

which lead to a disintegration of molecules into atoms, aLoms into

ions and electrons, and the formation of oxides and other compounds.

In certain cases, a discussion of supersonic flow must take into

account processes occurring on the surface around which the flow takes

plece such as fusion, sublimation, evaporation, chemical reactious, etc.

Marv of these phenomena were and still remain an object of detailed

eyl, ýriyntal. and theoretical studies. The present book attempts to

.i systenatic exposition of some of the results of these studies.

As far as theory is concerned, priority is usually given to results

obtained on the basis of the semi-empirical theory of turbulence.

The semi-empirical theory of turbulence, being part of the

statistical theory of turbulence, has until now remained an

important, and in many co.ses the only instrument in solving a

* majority of practical problems. Created initially as a result of

b • investigations of the flow of an incompressible fluid in tubes,

channels, boundary layers, filaments, wakes, and used primarily to

predict the properties of a flow of an incompressible fluid, the

_semi-empirical theory of turbulence has great potential for analýzing

much more complicated flows, such as the flow of a compressible and

heat-conducting gar, the flow of multicomponent reacting gas mixtures,

etc. This is convincingly demonstrated by the &.uýults of numerous

experimental and theoretical studies done during "lie past few years.

I"TD-HC-23-723-71



The book does not pretend to treat exhaustively all the problems

arising in connection with studies of gas flows in a turbulent

boundary layer at supersonic velocities. Partially this is due to

an insufficient solution of these problems; this is especially the

case for the problem of a turbulent boundary layer on loosened sur-

faces, and also in the case of ionized and radiating gas, etc.

Partially, the personal interests of the author have also played

their role. In particular, certain chapters of the book (III-V)

include only those divisions of turbulent boundary layer theory

to which the author contributed to a lesser or greater extent.

Chapter I presents the fundamentals of the molecular theory of

gas flow and gives a derivation of the dynamic equations for a

multicomponent reacting gas on the basis of the fundamental equation

of the kinetic theory of gases, i.e., the Boltzmann equation.

Chapter II gives a derivation of a system of equations for a

turbulent flow of a multicomponent reacting gas. This system of

*, equations is used to obtain the equations of a turbulent boundary

layer. The integral momentum and energy relations that play an

important role in the semi-empirical theory of turbulent boundary

layers are also derived therein.

Chapter III discusses the theoretical and experimental results

obtained when studying the characteristics of a turbulent boundary

layer on a nonpermeable surface In a supersonic gas flow which is

homogeneous in composition. The semi-empirical and empirical methods

for analyzing the boundary layer on a flat plate are presented.

The effect of compressibility and heat transfer on the laminar
sublayer is investigated. Experimental and theoretical data on the

parameters characterizing the heat transfer between the gas and the

wall (Reynolds similarity parameter coi.necting skin friction and

heat transfer; recovery factor) are given. A generalization of the

semi-empirical method to cases involving a flow over a cone at a

zero angle of attack, over a sphere, as well as to bodies of arbitrary

shape in a non-separated flow is also given.

FTD-HC-23-723-71 2



Chapter IV discusses the flow of a dissociated gas in a turbulent

boundary layer. A detailed treatment is given of the kinetics of'

chemical reactions occurring in a gas and on the surface of bodies,

and in particular, data are presented cn the kinetics of reactions

of dissociation for oxygen and nitrogen. Various models of a

S* dissociated, ideally dissociated and partially excited dissociated
gas are described. The semi-empirical methods of o skin

friction and heat transfer on a flat plate for equilibrium,

Ifrozen, and nonequllibrium states of the gas are prezented.

Chapter V gives the results of experimental and theoretical

studies of a turbulent boundary layer in tho presence of maza

transfer between the gna and the surface around whieh thoe flow takea

place. Methods of computing akin friction and heat tran"sfer on 4

poroua plate with various gaaes injected into 'he boundary layer

are discussed.

The author wiahes to express hi- deep gratitad to hiz teqohir

L Oeradimovich Lo~nsankty ror his oonstont auist&ance aud
encour'agement in writing thio book, wnd prti.ularly, for hit

O'tvftly Valuable dldcaaol of varieU4 R40tIons t"eote4 in tho

book.

T~ho iuthor 41hi?. to faspvoess reetlo NsP V. r-.

i.r
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CHAPTER I

EQUATIONS OF GAS DVRANICS

$1. I lit PP t IOn

The development or aerospace technolocy during the past fow
decoded has Aroused Crnat Inteesat Int the Proolems ot gas
ties at suptersonIc and hyptrsoani velocities. A study ot these
problend has shown that thade iewas cannot be diescribod using only

clft$al-a dynatle4jS, whicht is eonc1Trne4 With A fioW #At
relatively low veloclut.e, In this cataeo in addition to 64-2 dynnafiCs,
one tistu turn to many aeavs ot Vhysles and tocaistry.

Atny flow or a v1#0couz 424 isa1§ twn by dissipation of
ewethanisl41 envrcy, It4 onnionIto he-t, Haowover, at low
v~ooitinv vlsdcua; dIsslutItn 4cr ,ot load to theappi*tanne or
any noticeable tec U rature Is ooetc (tM;14 rtUr 'raAen~tsV
Untd#1 thes cistiv the 13kM, ity and vItC-ooitY Or a 448 My be
conaldered to be cofiltaflt ph$*Icai para=teter whltahdifar Itidependent

Att IntctV2as or* t"t Veiac1ie& or gated trot !die Ubso tie to
nodertely aU04erOulc v'elocittes, and a4 a result, the appearance or



substantial temperature gradients when a gas pasqe5 theough shock

waves and through boundary layers has made it necessary to consider

the dependence of the density, viscosity, and heat capacity of a gas

on the temperature. Here the flowing gas may be considered to beSf homogeneous.

A transition to hypersonic velocities causes such an enormous

Increase of the gas temperature in. shock waves and boundary layers

that thermochemical processes begin to take place in the gas that
result In a dissociation of gas moleculea intQý atomls, a dissociation

of the atomsa into ions and electrons (io'u)isation), and the formatiot4
of' oxides and other chenical coimpounds. In addition, in certain
cases it ia necessary to con.-ider processos occ~trring On the aurfaces
of the bedie~s around which the flow takes place, such as fusion and

stiblimation of the surface layor' of a body, chemical reactions,

#tc. Under thesok sonditiena, the moving* medium mlist tý- rvgardli-d as

a mixture of a number of component* differIng in their phy:stcal and

che-mical properties4  A study of' these complux procese Uili te
uAual Methods or classical tpooneooicl AS dynrnm3a inl Mdny
ca8es turna oukt to býe very difficult, esptiPdly If tht, thermoohov'i-

We viust Pecall that the -rrtn~ge4 '~c oaof
Vorioud gas dyntAntlc phonottna itIV4IVOO Pfwc~tualti, cs-rtain1 rV'etioti-

iR ship~t betwoen tho veloclty Cradiont and the frctttln stotre (N#wtOn'4

law), h-ett flux Und Legera;#r ,rdin (3uvrn~lw.tagS
diffuNtton and C.Onoentratiton gr'dlientr CMow'a hw)00 and uaing
equatIOlti that tan Ue obtAlined from thev nIftMl av of clfslical -

*othunwi7c and t rdm . n tvprtcftXtai.0., thk

40?lttetaO$t preo~rtviality in~ sxh, 1t',And iPick'

law#,, rtrlticcing certain Pro*Pertlat Or 'r=s &oiea4tili AAA th~oA

Stheory As, constAnt% -or 4tcti iro theo sýtate tht arc incvn'Wl heV0roro

* hand and can'not be &nxmlculatcd t eaotiqZ0y, but instt#0 -i'ott

foundnpercentlly, It 1s 4ultt naturAl Lh,!t. Ebtho ftroI~



theory, based on an approximate macroscopic model of a gas, is

inadequate for describing the many complicated processes, whose

study must take into account various microscopic phenomena (excita-

tion of the internal degrees of freedom of molecules, dissociation,

ionization, etc.). The kinetic theory of gases is a tool that can

be used to describe such processes.

The kinetic theory enables us to determine the transport

coefficients as functions of the temperature of a gas mixture, of

molecular weights of the mixture components, and certain parameters

describing the field of intermolecular forces. It also makes it

possible to set up the macroscopic equations of motion for a gas

in question. The kinetic theory is valid only at sufficiently low

gas densities, when it is possible to neglect collisions of more

than two molecules. If the mean free path of a molecule in a gas is

small compared to the characteristic macroscopic dimensions of a body,

then the gas behaves like a continuous medium. In this ease, the

ba,•ic equation ox the kinetic theory, i.e., the Boltzmann equation,

can be used to obtain the gas-dynamic transport equations and

expressions for the transport coefficients. Since our intention is

to follow this path, we shall briefly present here some of the

elements of the kinetic theory of gases. A knowledge of the

fundamentals of the kinetic theory is necessary ir onto wishes to

understand the relationhip between the mioro- and macro-prooess-es

occurring In a gas, and It is ••so practically useful when studying

the flow of Multijoaiponent, chemically-reacting add mixtures. Below

4e s'vall present only ttiose aspects of tht kinetio gas theory that

S-will be round nocoosnry later. A detailed and extensive presentation

. t ,me itecay is giveon In the monographa by Uirachfelder, Curtiss,

-BW-rG (-l, and by Chapman and Cowling [2).

52. tieient of the -f,0Llcur horof %s lo

The uy,4milc state of a syAtem of particles can be completely

4e~eribed by apectfyine the Pnrdinates and velocities (momenta) of

* VD-IiC- 23-Th3 -'l 6



all particles. The laws of classical mechanics enable us to pre-

dict the state of a system at any point in time from its initial

dynamic state.

At a certain time instant, each of the particles has a certain

velocity. Therefore to each particle we can assign a certain point

in velocity space, characterized by the vector vi. The position of

a particle in the physical space is given by the vector r.

To fully describe the dynamiic state of a system of particles,

the kinetic theory makes use of the concept of the distribution

function. If a mixture of (strictly speaking, monoatomic) gases in

a nonequilibrium state is considered, then the pr'operties of each

component of the mixture can be described in terms of the distribu-

tion function fi(r, .•, t), defined as the number of particles of

the species I which .t - time t are In an elementary unit volume of

the physical space containing the point r, whose velocities lie

inside the elementary unit volume in the velocity space containing

the point v,.

The space (x, y, z, Vlx, v iy viz) is a phase space, and for

this reason the position and velocity coordinates are independent

variables.

The total number or particles in an elementary unit volume of

the physical space at time t can be obtained by integrating the

distribution function over all possible values of the velocities

v 1 x, vP, and v

By definition, nI iu the numerical density of the particles of

species L. Por convenience, the triple integral

PT'D-I.C-23-723-7l



will be denoted below by

Knowing the distribution function, we can calculate the average

value of any quantity ýi, associated with the particles of species

i, and being a function of the velocity components alone. The

formula for the average value of 'i can obviously be written as

The line over ýi symbolizes averaging. Thus the average velocity

i of the particles of the i th component whose numerical density is

ni is given by

The average mass velocity, which is a weighted average since each

particle makes a contribution to it which is proportional to its

mass m,, is defined by the formula

.(1.4)

where _Jn p(•' £) is the density of the medium at the point in

question.

The average mass velocity is usually termed the flow velocity,

and possesses the property that the momentum of a unit volume of the
gas is equal to the momentum that would result if all particles of

this volume were moving at the velocity under consideration.

The thermal velocity of particles of species i is defined as

the velocity of the particles relative to a coordinate system moving

at the average mass velocity v:

PTD-HC-23-723-71 8
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Vi t 0%. V. (.~

The diffusive velocity of the ith component is defined as the

flow velocity of particles of this component relative to a coordinate

system moving at the average mass velocity of the gas. In other

words, the diffusive velocity is defined as the average thermal

velocity:

£--- (1.6)

The temperature in the kinetic theory is defined in terms of

the kinetic energy of thermal motion averaged over all particles

z' 2 - ', (1.7)

where n Dzit and k is the BolrzmLnn constant.

Listing the expressions for all ýhe macroscopic quantities

given in terms of the distribution function, re shall have

S..

V In 11 -4

In a gas in a state oi" nonequiliiLrium, the field of one or
several quantities charactetizing the macroscopic properties of a

system may be inhom.ogeneous. The inhomogeneitj of the fields -

i.e., the existence of the gradients of macroscopic quantit~is (of

the average mass velocity v, temperature T, mass conceitration

0 1i Pil, and others) - causes the molecular transport of the

momentum miV,, kinetic energy 1 m 72, an1 wass m1 through the gas.

In order to characterize the molecular transport of some

substance, in the kinetic theory one introduces the concept of the

FTD-HC-23-723-71



flux density vector of

SJJ'J'i. (1.9)

The physical interpretation of the flux density is that its component

in any direction is the density of the flow of the corresponding

physical quantity through a surface normal to this direction.

If *i = mi, then from Equation (1.9) we obtain the flux density
for the mass Ji "I"11'l, mldi

*'~ hJ~d'~ ~. ui~I~.(1.10)

If •i miVi, then

is a symmetric tensor of second rank characterizing the partial
ith oftegs(2)

pressure of the i component of the gas(. The sum of the tensor
partial pressures over all gas components forms the tensor of the
pressures of the mixture

__ , .Z.,.•v (1.12)
I I

The diagonal elements of the pressure tensor P xx Pyy and Pzz are
equal to the normal stresses, and the oft-diagonal elements represent

the shear stresses. For example, P is equal to the force per unitYX
area of a surface perpendicular to the y direction in the x direction.

If 'nVO, then

Qn•" 4 , IAIIVI•V(I* = a- v v(1.13)

Pootnotes (1) and (2) appear on page 38.

PTD-HC-23-723-7l 10



is a flow vector characterizing the transport of the kinetic energy

by the particles of species I. The sum of such vectors over all

components of the gas mixture gives the heat flux density vector

q2 2 (1. 14)

The components qxs qy qz of the heat flux vector represent the

fluxes of th kinetic energy in the x, y, and z directions, respec-

tively.

Equations (1.8) and (1.10) - (1.14) indicate that, if the

distribution function f is known, then the problem of determining

the field of flow and the transport characteristics can be completely

solved.

The variation of the distribution function f is described by

the integro-differential Boltzmann equation which, assuming the

absence of an external force, becomes

Here

•,j 2' (1.16)

is the collision integral accounting for the change in the number of

particles of a given group due to collisions;g ,,.-, 1 -- ei', is the

absolute value of the relative velocity of the particles of species

i and J before a collision; b is the minimum distance between the

colliding particles if there were no interaction (impact parameter);
SIf' and r' are the distribution functions of the colliding particles•i
of species i and J after the collision; fi and fj are the distribution

funcrtions of the colliding particles before the collision.

Equations similar to Equation (1.15) can be written for all

components of the gas mixture. In each of these equations, the

SFTD-tIC-23-723-71 11
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integrand on the right-hand side will contain the distribution

functions of all components of the mixture. These Integrals depend

implicitly on the Intermolecular interaction. The distribution

functions f'V and f'V are functions of the velocities v' and v'i j
which can be found from the laws of mechanics assuming v,, VP b,

and the potential of the Intermolecular interaction are known.

B3. Gas Dynamic Transport Equations Expressed

in Terms of the Flux Density Vectors

The basic gas dynamic transport equations - i.e., conservation

equations for mass, momentum, and energy - can be obtained directly

from the Boltzmann equation without specifying the form of the

distribution functions. Multiplying the Boltzmann Equation (1.15)

by $ and integrating the result over all values of the velocity v,,

we obtain

j (1-17)

The first two terms on the left-hand side of the equation can be put

in the form

1~ ~r 4d~4 dv - •1-,"

• ~. •, (,'•1-•

Substituting these equations in the left-hand side of Equation

(1.17), we have

This equa4 .on is known as Enskog's generalized transport equation for

associated with particles of species I.

PTD-HC-23-723-71 12
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Sum:ming Equation (1.18) over all components, we can obtain the

transport equation for the mixture:

* w~v~-r~~ nnw-z s C-±r*j~d (1.19)

It Is very difficult to use Equation (1.19) for arbitrary quantities

Oi due tc the presen..e of very complicated integrals on the right-

hand side of the equation. However, if is Identified as the mass

Mi, momentum mVP, or the kinetic energy of the molecules 2 miV

(in the case of the multi-atomic molecules, in addition to the

kinetic energy, one must also consider the internal energy), then,

as one can verify, the right-hand side of Equation (1.19) is equal

to zero and the equation becomes considerably simplifled. In fact,
let us assume that the interacting system consists of two types of

particles: one of type I with mass Mi, and the other of type 3 with

mass m,. Let us assume that the velocities of particles before

collilsions are Vi ard V3 , respectively, and that the corresponding

velocitles after the collision are Vi and V\ 1 . Then, assuming that

the ,systtm of colliding particles as a whole ti not subject to any

external forces, and the collisions are adiabatic, on the basti of

the conservation laws for maaa, mozontum, and energy we can write

""" "+ -;÷v. I
st h .M • + . ..; .. j ( )

In the absence of chemical reactions an - a,1 , cj a ,

The above expressions for the conservation lasu (1.20) for a

system or colliding particles can be written It the tollowing

generalized rorm:

" % ~~~~+ % +-. l ,,(..+

where *io any or the quatititlie A,, n4V1 and V. It tau be

shown that any function or velocltlez, sattisfyinr the relation 01.21),

+I:" FPTD-BC-23-723-71 13
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is a linear combination of these quantities. The quantities ýi,

satisfying Equation (1.21), came to be called summation invariants.

Now let us consider the integral under the summation sign on the

right-hand side of Equation (1.19). This integral

•zi~~t; ,h% j1(I.•i -- /1j) g; bidbdv*dr' (1.22)

Is equal to the integral

V; - ,i/,),d'd..;. (1.23)

written for reverse collisions.

It can be shown(3) that gi* g•'j, b = b' and dv 'dv d'"

dv'o. Therefore, the integral (1.23) can be written as

- ~ (1.24)

Since the integrals (1.22) a.d (1,24) are equal, each of them will

be equal to one half of the sum of both Integrals, I.e.,

Summing theoe Intogralo over I and J, and using the fact that I and

J may be Interthanted, we have

x_ (% tj -. 1t4) - *A) .

PotP 4uVhatio" Invariants, #1 1 " J Is equal to zero.

Consequently, also the right-hand side of Enskog's Seneralited

trarsport •quation (1.19) vanlshet •t Is equal to ati, a1 V1 or

Iat

Pootnote (3) aWpears on paMe 38.

'TO-UiC-23-723-71 14

". - -V ______"_________'___"____':"Y:•-! :'"'' . ...... ..



Thus the mass, momentum, or energy transport in a gas mixture

are described by the following equation:0~~~~- -, - \? ,,•.,_,•l~. ~•
•.1 - j+•" " " a- " (1.26)

Now we shall derive transport equations for specific molecular

* quantities. We set *i mi. In this case Equation (1.18) becomes

• •. -'/- . l (1.27)

The integral 1;.:dv: is equal to the rate at which the number of

particles of the Ith type increases due to collisions with particles

of j type In a unit volume (in the absence of chemical reactions
the integral vanishes). The quantity

tt

gives the total increase in the number of particles of the ith type

in a unit volume per unit time due to collisions with all types

of particles, including those of the ith type (as a result of chemical

reactions). Substituting in Equation (1.27) the expression for
from Equation (1.6), we obtain the equation of continuity for the

ih component of the gas:

-!. 1#&& 0 L , + (1.28)

Passing in Equation (1.28) from nI to mass concentrations

(129

we have

whore w MI ItsK is the mass rate of formation of thle ith -omponent
In a unit volume,

e P'•TD-IC-23-723-71



Summing Equations (1.30) over all i, we obtain an equation

of continuity for a mixture of gases

"-dT (1.31)

since!.' --, 0 by the definition of the rate of diffusion, and

, 0 by Equations (1.21) and (1.25). The condition

2w=0 (1.32)
,0

expresses the conservation of mass of a gas mixture with chemical

conversions taking place.

Using the equation of continuity for a mixture of gases (1.31),
we put the equation of continuity for the i th component in the form

S.04 -, . a .( )(1.33)

It will be noted that on the right-hand side of Equation (1.33) the
quantity to be differentiated was defined earlier [see formula (1.10)]
as the mass flux density vector.

To obtain the momentum transport equation we substitute *i n
miVi in Equation (1.26), and obtain

"•[--nj-- - - - ( . 0. (1. 34)

This equation can be simplified by making use of the relations between

velocities (1.5) and (1.6) and the definition of the pressure tensor
(1.12). When differentiating, it must only be kept in mind that

r, vi and t are independent variables. After simple transformations,
the equation of motion for a mixture of gases will be written in the

following form:

u-

?I'D-HC-23-723-71 16



The energy transport equat~ion will be obtained by substituting

4'= m V 2in Equation (1.26):

-Irk -ri~3t~)%.t~.L-KV..i~r.O (136

Using the relations between the velocities (l.5), (1.6), and the
definition of the pressure tensor (1.12). and introducing the
energy 4flux density vector q, defined by Equation (1.14)4 we shall

-t get the ehergy balance equation

Here

is the internal energy of the gas per unit ma:1s, e-qual to the
translational motion of molecules (kinetic energy of the transla-
tional motion of a gas stream as a whole ia not Included In thia
energy) . In the last term on the left-hand side at equation (l.I7)

Ithesymbol Pr monrta the tosrP is multiplied by the veotor

KWe rocall that this operation can Int general be rtprne~nted by

the expression ?*A, and the result can be eiprecsed a4 a vector with

Equation (1.37) can be simplified using the equation of"t continuity
* for the mixture (1.31). As a result, we have

Equation (1.39) Is also valid for polyatomic g~ases whose
tmolecules possess Internal degrees or treedoa%. In this case, E

7kshould be understood as the sum or energiet of traw- lati-ana1 anid

IItra degrees.fl3.' or freedom of molecules,



.r .. -. . - -.- .-. r.w1.

P (1.40)
I I

and the expression for the energy flux density (1.14) must be
replaced by the expression

where e 1 1i the energy of the internal degrees oa freedom of a

molecule of the ith type,

The energy balance Equation (1.39) can be written In terms of
the temperature. In this case, Using the equation of continuity for
the ith component (1.30). we get

+ 4

Itere

Is the woea specific heat of the mixture per unit *eilht at contant

0*. Rate of -Dittusiont PlxthniyVttr
and transport Cog.,o -nts

Th bati gas dynnitc equations of contitnity (1.33), motion
(1.3%), and enre (1.39) or (1.2) were obtained trom the Bbltsnnn
equation w"ithout tpnit•flrg the fore of the distribution function.
However, an inspection of these equations mates It clear that to use
the I n practice one a'set know the expressions tor the rate of
diltusion and the *ass, mosentua, and energy flux density vectors

in tenms of the spatial derivatives of the macroscopic quantities And
transport coefficients.

PrD-UC-23-723-71 18
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To determine these quantities, one must solve the Boltzmann

equation. A great deal of literature is devoted to the problem of
(4)

obtaining approximate solutions of tne Boltzmann equation). It

is impossible to dwell upon this problem in detail in the present

volume, and for this reason we shall merely briefly present the

ideas involved in a widely known method used to solve the Boltzmann

equation, i.e., the Enskog-Chapman method of perturbations.

As we know, a gas which is adiabattcally insulated and is not

subject to external perturbing ir4luences for a sufficient length

of time will finally achieve a certain state of equilibrium. For

systems in equilibrium, the distribution functlon fC does not depend

on the tiwe, and ac a result the right-hand side of the $oltzmorn

Equation (1.15) vanishes. The vanishing of the right-haod alde of

the equation expresses the state of equilibrium existlng in

collision proiesses, which means that the number of particles of

the iA type leaving a certain velocity interval cue to collilon-s

Is exactly equal to the number of particles entering this Interval

as a result of collisions. The suffrilent ýondlt•n.i for equilibri•us

may be obtained it tbo integrand on the rtight-harn ai4- of othe

Boltzmann equation is asuumo to vanish, I.e.,

Hlowovr', it is next ,alear vhother this condition is Itecessmary, stwfit

f'or tho risht-hand side of the bolttmtinn equation to Vkfilah, It Ist

ontl oeoessary that ý4e 4integrand ao-wme pmii1tive Vtnd nogt•tve

ndlue-•n the regiot, of irtcgration, to that the deofnitoe Integral

will add up to sero, The nvcessity of the (zonldt5•of (i.4) 1.1
proved usinv iolttann't theorem, whose proof' an be found ib the

4tototrphby Itioncnelder, curtias, anid 11d

Squation (1.44) can be Writton 4Lt

Pootnote (4) appeArs on Pit e 38.
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In /i +'In /IInfl Ini (1451)

Consequently, logarithms of the distribution functions are summation

invariants for molecular collisions. But according to the conserva-

tion laws (1.20), the only quantities that can qualify as summation
invariants for collisions are the mass mi, momentum mivi, and kinetic

1 2energy 1 mivi. Therefore, in general In f must be a linear

"combination of these quantities, i.e.,

I n/j a~in t- -b.()njvj) + t1. 6

where ai, b and c are constants which depend (through initial

distribution functions) on the tc .1 number of molecules of the ith

type, total momentum, and toba' .nergy of the system. Upon deter-

mining these constants from the conditions

(1. 47)I [

we arrive at the well-known Maxwell distribution function for a

system in equilibrium

, n ,,, .exp [ m , V ), (1.48)

where vi - V Vi is the thermal velocity.

In the case when the gas mixture is not in equilibrium, the

distribution function can be found using the Enskog-Chapman method

by introducing a perturbation parameter c in the Boltzmann equation

(1/c is a measure of the collision frequency). For small c,

collisions occur very frequently, so that the gas may be considered

as a continuous medium at each point of which a local equilibrium is

established. The distribution function for this case can be expanded

into a series in the varameter c:

FTD-HC-23-723-71 20



.+ 8P' O f + . . (1 .4 9 )

Substituting this series into a rearranged Boltzmann equation

at or 8 -(1.50)

and equating coefficients of identical powers of e, we obtain a syst-m
of equations for the function f(, f etc.:

o = • i, Ii'

• •-T~~+ Vt-.- W i 1
(1-.51)

The solution of the first equation in the system (1.51) is, as

"is easy to see, in the form of the Maxwell distribution (1.48). The

quantities

•" ~~~~~ ~ ~ ~ i , " " ( , ) ', , ,( , )and 7' •. 7' ., ,,1

Sin the expression (1.48) are arbitrary fun-tions of position and

time. In order that these quantities may correspond to their local

values, it is necessary that the solutions of the remaining equations

of the system (1.51) satisfy the conditions (1.47). In other words,

the distribution functiors, in an approximation of order higher than

zero f) k 1, 2, 3, must satisfy the conditions

I 0,

lil

for Vý =, 2,3...

FTD-HC-23-723-71 21
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Using the conditions (1.52) one can obtain solutions of the

second equation in the system (1.51), etc. The Enskog-Chapman

method which is essentially a method of successive approximations

can in principle be extended to systems with larger gradients of

thermodynamic and gas-dynamic quantities. However, in order to solve

a majority of gas-dynamic problems, it is sufficient to solve the

Boltzmann equation to a first approximation. In this case, the law

describing the variation of the distribution function differs very

little from the Maxwell law (1.48), and the gradients of quantities

characterizing the macroscopic properties of a gas turn out to be

small in the sense that these quantities do not vary appreciably over

a distance on the order of the mean free path of molecules.

Referring the reader who is interested in the details of the

mathematical solution of the system (1.51) to the already cited

monograph by Hirschfelder et al., we shall indicate some of the

results obtained when solving the Boltzmann equation to a first

approximation.

The expression for the rate of diffusion has the form

S [_L ( nl) + (nfln) (1.53)

- . • -7 F - , 1= 1 , 2 , ... .,I V

where Dii and oV are the diffusion and thermal diffusion coefficients

for a multicomponent mixture, respectively; p is the pressure.

Formula (1.53) shows that in the absence of mass forces, diffusion

may occur for three reasons: (1) under the influence of a concen-

tration gradient (mass diffusion), (2) under the influence of a

pressure gradient (pressure diffusion), and (3) under the influence

of a temperature gradient (thermal diffusion).

It must be emphasized that in the zero th approximation (for the

Maxwell velocity discribution (1.48)], the rate of diffusion V., and

consequently, the mas.i f 1',x density vector for the ith component,

will be equal to ze.o.
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"g ....................... ... . . ....... . . ..



The expression for the rate of diffusion of the ith component

of the mixture (1.53) is usually difficult to use in practical

calculations, since it involves a diffusion ccefficient for a multi-

component mixture, DIj, which to a first approximation can be

expressed in the form of determinants of Nth order (N is the number

of components in the mixture) in terms of the diffusion coefficients

* for the binary mixture Tu, and of concentrations and molecular weights

k. of the components.

It is much more convenient, instead of N formulas (1.53), to

use N - 1 independent relations

WX: Tj ( i.) I' A )o
N (1.5~4)

a In 'i1~\- n~ m3  ua '1m

A derivation of these relations, sometimes called the Stefan-Maxwell

relations, can be found in the monograph by Hirschfelder, Curtiss,

and Bird(5)

If one neglects thermal diffusion and pressure diffusion as
compared to mass diffusion, then Equations (1.54) simplify to the
form

(1.55)

Using the expression for the mass concentration (1.29), we put (1.55)

in the form [3]
N N

Ws- - (1.56)

Making use of Equation (1.56), we can introduce the so-called

effective diffusion coefficientsi (6):

J• ... o-IF,(1.57)PI,

Footnotes (5) and (6) appear on page 38.

FTD-HC-23-723-71 23



where • can be found using one of the following formulas:

NN N MC ýj-V

N 'N N i (1.58)

M .0 ~jit +21CkZ- dii CJ j

From the definition of the effective diffusion coefficient

(1.58), it is clear that generally speaking this coefficient depends

not only on the composition of a mixture of gases, but also on the

ratios of the diffusive flows of components, i.e., essentially on

the defining parameters of a concrete problem. This circumstance,

although in certain cases creating inconveniences in the computation

process, is not important in boundary layer calculations for multi-

component mixtures of gases(7', since in many cases the most conven-

ient method of calculations is the method of successive approximations.

The diffusion coefficient for a binary mixture, T, is given by

the expression

X =0,0026280 v.2(~- ±M 3 p~(Os. U(; (1.59)

,Here p is the pressure, in atm; Mi is the molecular weight of the Ith

component; W11 '(T,) is the collision term for mass transfer measuring

the deviation from the model in which gas molecules are considered

as hard spheres for which f"eP'=; T is the temperature, in OK;

Tj,= kraij is the characteristic temperature, in OK; elj/k is a

parameter related to the potential energy of molecules that charac-

terizes the interaction between molecules of the ith and j th type,

OK; i is the effective collision diameter for molecules (in

angstroms).

The values of the function g4.,*'(Tj) for 0.3 < Tj < 1400 are

listed in the monograph by Hirschfelder, Curtiss, and Bird.

Footnote (7) appears on page 38.
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Formula (1.59) shows that the diffusion coefficients for a
binary mixture, AJj, are relatively insensitive to moderate changes

in the molecular weights of the components. Therefore, if any gas

mixture consists of two types of components, each of which has

approximately identical atomic or molecular weight and approximately

k identical collision cross-sections, then the mixture may be considered

to be "effectively" binary in that each group acts as a single

component. One must, however, keep in mind that in calculating the

energy transfer, one must strictly differentiate between the

enthalpies of the individual components.

For a binary mixture, from Equation (1.53) one can easily

obtain the following expression for the diffusive flux of the i

component:

•ft.

(l no, - --- OInT . (1.60)

Here

•p k, n"nm. M (1.61)

is the ratio of the thermal diffusion coefficient to the binary

diffusion coefficient, known as the thermal diffusion ratio. This

ratio characterizes the relative significance of the thermal

diffusion versus the mass diffusion.

Using Expression (1.29), we shall change ir. Equation (1.60) to

k the mass concentration, and we obtain the result

J' ,i j , + - j a' n- --- 01 (1.62)S_ 'Olne• m3 -m Onp or mI.: , OInTo

In boundary layer type flows, the contribution of the pressure

diffusion to mass transfer is always negligibly small as compared

to the contribution of the mass diffusion, since with an accuracy

on the order of 1/Re, the pressure is constant across a boundary

FTD-HC-23-723-71 25



layer. The term characterizing the thermal diffusion is also

usually small as compared to the term describing mass diffusion.

In a turbulent boundary layer, where the molecular diffusion needs

to be considered only in the laminar sublayer, usually occupying

less than one half of the entire boundary layer (although in certain

cases the thickness of the sublayer may amount to more than 50% of

the thickness of the entire layer), only the mass diffusion must be

considered(8). In this case Equation (1.62) assumes the form known

as Fick's law

J i (1.63)

Continuing the discussion of the first-order approximations

to the solution of the Boltzmann equation, we shall write an expres-

sion for the pressure tensor

P =p -2pS,
(1.64)

where

p nkT (1.65)

is the equilibrium static pressure for a local temperature and

density of particles,

0 1 0 (1.66)
00)

is the unit tensor, S is the rate of strain (displacement) tensor,

defined by the expression

al 70,Y (1.67)
S, -,•1= ,2,3,

ji is the dynamic viscosity coefficient.

Footnote (8) appears on page 39.
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The diagonal and off-diagonal elements of the pressure tensor

are

(- [ +•), =,P=1,2,3. (1.68)

Equation (1.68) shows that the pressure tensor differs only as
to its sign from the stress tensor, as usually defined in the
mechanics of continuous media [43.

The dynamic viscosity coefficient introduced above for the case
of an N-component gas mixture is defined by the expression(9)

1a1 HS MIS ... UI

91, hi. NO ... 4iU:a

S . "(1.69)
HIS 11" //,, ... MI'V

u Hit, U... HIV

where

i t i

x ni/n is the molar concentration of the th component; o la

the viscosity coefficient of the Ith component, equal to

U is the collision diameter; T# TWe 1 Ir the chawteriatic
temperature; c /k is the parameter related to the potential function
of the intermolecular interaction a(IMr is the collision teom tor
momentum transport, measuri'ng the deviation from the model In which

the molecules of the gas are considered as hard spheres, f1'r which

Footnote (9) appears on page 39.
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rl"'' j " The values of the function 11'"P (TI) for a wide range of

TOI are listed in the monograph by Hirschfelder, Curtiss, and Bird;

V iJ is a coefficient defined by the expression

V...... g (1.72)

where Q(1-2r is the collision term for the ih and j component for

the case of momentum transport. The values of this term are also

given In the monograph by Hirschfelder et al. The quantity

appearing in Equations (1.70), is equal to 9OijV' .

In Equation (1.69) the off-diag&nal elements of H,, are usually

small as compared to the diagonal elements H0. In order to make

the off-diagonal clements exactly equal to zero, one must set P

5/3. If the same assumption is used for diagonal elements, then

expression (1.69) becomes

(14.3)

+M

However, forntula(1.73) la not In good agreement with experiment.

To bring It In agreement with experimental data, it ia sufficient

to replace the factor 2 In the denominator with the empirical

. .oericlent 1.385, I.e.. to write It in the form

A computAtIon or the vlscoatty or mixtures a•,ording to these

foraulau turtw out to be quite latrloue. For this reason, in many
*

caseo It it advisable to use leda exact but simpler relation-3. In

pirticul-lar, the dynamic vlcortlty of a pure Ca• can be coaputed from

tho well-known Sutherland forftala
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The values of the coefficients Kt and C' for certain gases, as well

as numerous data on the viscosity of pure gases and mixtures, are

given in the monographs [5).

The energy flux density vector q for a multicomponent mixture

of mono-atomic gases, obtained as the first approximation to the

solution of the Boltzmann equation, has the form

N N N ,

Here A is the heat conductivity coefficient, and hi is the enthalpy

of the Ith component per unit weight, equal to

'~ a,(1.77)

Expression (1.76) shows that in multicomponent mixture3 the

energy transport takes place by means of three mechanisms. The
firot tort on the right-hand side or (1.76) characterizes the

energy transport due to heat conductivity; the second term - due
to :-:$as tr&I~pott by nts of all types or diffuzion (mass diffusion,

preo-ure dirrusion, and thermal ditfu-lon). The third term charac-

terlxe-a the additional energy flux due to the dirrusive thormal

Por a mixture of polyatomic Sases, the ener.y flux density has

the tame !orm au for a mixture of monatomtic asene (1.76), with the

exception that the enthalpy h1 Is understood to be equal to the sum

wherv el Is the energy or the intelna degrel'* of freedom of #w1eculet.

aTalaLor'n Note: lhhen conventration gradler.tM produce nun-
U11forclty of teoperature, this Is called the DMfour ek'fect.

.. -.. C-23-723-71 2.



In boundary-layer type flows, the contribution of the diffusive

thermal effect to the energy transport is usually small, and thus

with accuracy sufficient in practice we can write the following

expression for the energy flux density vector in a multicomponent

mixture

N
2- -, (1. 79)

If expression (1.53) is used for the mass flux density vector

of the Ith component, and if it is assumed that thermal diffusion

and pressure diffusion are negligibly small, then Equation (1.79)

can be written in the form

P (1.80)

The quantity in parentheses may be considered to be a certain

effective thermal conductivity coefficient, consisting of two parts:

4$ which is the heat conductivity of a gas mixture, due to molecular

collisions, and

which is the heat conductivity due to mass transport, i.e.,

144 ~(1.82)

It mass transport makes chemical reactions such as dissociation,

ionization, etc., possible, then the heat conductivity coefficient

A is called the heat conductivity coefficient of a gas in a "frozen"

btate (i.e., in the absence of chemical reactions), and X1 is the

heat conductivity coefficient accounting for chemical reactions.

IPcr a gas consisting of molecules of one type which do not

possens any internal degrees of freedom (the internal degrees or

freedom are "frotepli, the heat conductivity coefficlent can be

expressed in the following fashion (AR - 0):
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|a

• =--pcg (1.83)

where cv is the heat capacity per unit weight at constant volume.

A gas consisting of molecules of one type that do possess

internal degrees of freedom and are in various excited quantum

states may be considered as a gas which is a chemically reacting
mixture with a large number of components, none of which possesses

any internal degrees of freedom. If we assume that the rate of

energy transport from translational degrees of freedom to internal

degrees is small - or, in other words, the distribution of moleculesii • over various states is an equilibrium distribution, cor'responding

to the local temperature - then for polyatomic molecules (of one
4..ype), we can obtain the following expression for the effective heat

conductivity coefficient

where y - C • is the selr-dirtusion coefficient defined as the

limiting form of the diffuslor coefficient fox, a binary mixtue

The expression for the self-dimfuuion coefficient can be obtained

from Equation (1.59) by setting I - J. Thu dimensionless quantity
WiPA Is a function of tempei-ature, and its value is on the order of

unity. By setting this value to unity, we obtain the following

rormula for the heat conductivity coefficient for a polyatomic gas

The factor (9y - 5)/•s i- called Altken'3 corrutive factor. !quationa

(1.84) and (I,85) are not In good agreement with experimenL ait

ordinary temperatures, since the enerV' transpoft from the transla-

tional to the internal degrees or freedom at tuch temperatures It

difricult. Hiowever, at high temperatures. Equation (1.84) ia

sufficiently accurate.

j Footnote (10) appears on page 39.
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Today the heat conductivity coefficients for mixtures of mono-

atomic gases can be computed with great accuracy using the Chapman-

Enskog theory. The existing methods of computation, which are a

further development of the Chapman-Enskog methods, make it possible

in principle to compute heat conductivities of mixtures of poly-

atomic gases at high temperatures. To carry out calculations using

these methods, one must know the potential specifying the interaction

between molecules. However, in many practical important cases,

these potentials are not as yet sufficiently known. Our knowledge

is particularly limited when it comes to potentials describing

interactions of electrons with atoms, ions, and molecules. When

calculating viscosity coefficients, we are permitted to neglect

collisions of electrons with other particles since the electrons

carry only a small fraction of the total momentum due to their

small mass. However, when calculating heat conductivities, the

collisions of electrons with other particles cannot be neglected,

since electrons,-having a great speed, carry a significant fraction

of the kinetic energy. A detailed discussion of the problem of

determining transport coefficients in tne air at high temperatures

can be found t.n a paper by Hansen (6). Practical methods of calcula-

tion of heat conductivities in pure gases and mixtures can be found

in the monograph by Bretshnayder which was quoted above(ll).

1 5. qurAtions or tho Dynamics of a Multi9co;Mone.nt,,
Reacting (Oa~t

The expre-siono for the mata flux deonsity vector (rate or

dirfubion) of the Ith coMpontent (1,53). pressure tensor (1.64•), and

the energy flux density vector (1.76) given in the preceding section

enable ua to write the gas dynamic t.'ansport equattlon (30etLion 3)

in mcro-coplc form. However, before we do this, we zhk11 firat

collect .ill transport e#uation*, NoeplQg fthe vector-tensor notation.

The equatlon of continuity for a mixture of gaoes Is

Pootnote (11) appearz sn page 39.
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(Pv)(1.31)

the equation of continufty for the ith component is

6e4  *j a
p-•-+ o'. •-;-• •- •J,.(1.33)

the equation of motion is

7W W) ,(1.35)

the energy equation is

P ! + (1.39)

In order to complete the system or equations (1.31), (1.33),

(1.35), and (1.39), that relate the five unknown quantities V# a,

pj,c1 and E (or TF), we must add to this syatem the equation of
state for a mixture or gasses

Substttutinc the expressio (1.64) for the pressaro tesoar ;il

the equation of' motion (1.35), we obtain tho tollowinw, tun4;skent~i

tom ofe thi dquationt

p .r (1.87)

+ 2

In the eniergy equation 0. -39), 'we Pate trM,4 the internAl enqierp
'4 to the eflhAlfl h, related t2, the tamter by

"&r\ +t... . 9)
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simultaneously replacing the pressure tensor by its expression in

* (1.64). Then we have

Keeping in mind that

(~. .9(1.91)

we change Equation (1.90) to the form

dA dv 0 v•i p -• -a - -r "q + 21.4A2
S(1.92)

We shall give still another form of the energy equation that can be

easily derived from Equation (1.39) by using Equations (1.35), (1.64),

(1.88), and (1.89):

d P)( = OOP--h +2-v2 tJ). (1.93)

The quantity

h• T=,1  (1.94)

will be called below the total enthalpy of a gas.

Now we substitute the expression for the mass flux density

vector (1.10) in the equation of continuity for the ith component,

also using Equation (1.53) for the rate of diffusion and replacing

the molar concentration xi with the mass concentration ca according

to Equation (1.29). Thos gives
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If we neglect the pressure diffusion and thermal diffusion as

compared to the mass diffusion and replace the diffusion coefficient

for a multicomponent mixture, Dij, with the so-called effective

diffusion coefficient Ot, defined by Equation (1.58), then Equation

(1.95) wIll become

. -.-. p..--.w, ± • (1.96)

In the case of a binary mixture, the coefficient T equals the

diffusion coefficient for a binary mixture, Ti, and Equation (1.96)

will then be given by

P +pv. -wj+ " (1.97)
49 (

Now we consider the energy equation in the form (1.93)

Substituting in this equation the expressions for the energy and

K mass flux density vectors, (1.76) and (1.10), (1.53), respectively,

we have

Pi +_ 0±2 +~~)r~ r
0tT

N N
- .04- cj(, -_mj)p

i=d j=1

N

N 7, [Tm LOh') (1.98)
8InP p 0 n 7' • M1

+ Cj(m - M (4-",

As noted above in boundary-layer type flows, the contribution

of the pressure diffusion to mass and energy transport is very

insignificant. The contribution of thermal diffusion to mass and

energy transport (diffusive thermal effect) is in many cases also

small. Neglecting these effects and using the effective diffusion

* coefficient instead of the diffusion coefficient for a multicomponent

mixture, we obtain the following form of the energy equation:
Of•- -P-+2• a (,.D

( s (1.99)
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Taking the fact into account that

N T
hi o T +hlO0

and, consequently,

IN1 1Or C - h ,J' "•cci (1.101)

we write Equation (1.99) in the form

dH 1p± 2 L(fv)+(112
dt Ot Or (1.102)

0 ra_ h +O (Le,-- 1) h

Here hi0 is the heat of formation of the i th component under standard

conditions.

Equation (1.102) involves the parameters: the effective Lewis

number and the Prandtl number

Lei Pr= -.-- (1.103)

A parameter that can be derived from these two is the effective

Schmidt number, defined as the ratio of the Prandtl and Lewis

numbers:

* PrLe- (1.104)

The effective Lewis and Schmidt numbers introduced in this manner

cannot generally be considered, Just as the Prandtl number, to be

similarity parameters, since the effective diffusion coefficient

depends by definition on the diffusion flows of the individual

comnponents and thus on the defining parameters of a specific

problem. However, in the particular case of a binary mixture, a

beconies equal to the diffusion coefficient for a binary mixture,) 11 ,

which, as can be seen from Equation (1.59), does not depend on the

defining parameters of a flow. In this case, the Lewis and Schmidt
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numbers, formed in terms of the diffusion coefficient for a binary

mixture

V% L -- (1.105)

may indeed be considered to be similarity parameters.

An inspection of Equation (1.102) shows that, if the Lewis

number is equal to unity (Lei 1), then the energy equation has the

same form as the ordinary energy equation for a gas with homogeneous

composition.
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FOOTNOTES

Footnote (1) on page 10. It should be noted that, when comput-
ing averages, the integration over Vi
is equivalent to integration over vi,
since these velocities differ by a
constant and the integration is per-
formed over all velocity values.

Footnote (2) on page 10. In Equation (1.11), the tensor P is

regarded as the result of the dyad
multiplication of two vectors ViVi"
where - in contrast with the scalar
product VI.Vi and the vector product

Vi x Vi of these vectors - the

multiplication sign is not included
in the dyad product.

-ootnote (3) on page 14. See (1] on page 39a.

Footnote (4) on page 19. See, for example, the monographs
written by J. Hirschfelder, C. Curtiss,
and R. Bird, and by Chapman and Cowling,
mentioned before, that contain results
of early work. The results of more
recent work can be found In a monograph
by Kogan, M. N., "Dinamika razrezhennogo
gaza" (Dynamics or Rarefied Gas),
"ONauka" Publishing House, Moscow, 1967.

Footnote (5) on page 23. See (1] and (2) on page 39a.

Footnote (6) on page 23. The concept of the effective diffusion
coefficient was applied to practical
boundary layer calculations by 0. A.
Tirskiy. See, fot example, Tlrakly,
0. A., Determination of the Effective
BIfrrualon Coefficients in a Laminar
boundary Layer, Doklady Akademil Nauk
SSSR, Vol. 1556 No. 6, 1963, pp, 1278-
1282, as well a. the above paper by
the same author.

Footnote (7) on page 24. A detailed knowledge or molec-Alar
diffusion, Just as the knowledge of
moleicular heat conductivities and
viscosities, Is very necessary when
studying turbulent boundary layers In
hypersonic f)ows, due to the major role
played by the laminar sublayer In
processes involving heat and mass
transfer.
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Footnote (8) on page 26. One exception may be flow of a multi-
Scomponent gas mixture containing

components differing greatly in their
molecular weight - such as, for
example, hydrogen and air, helium and
air.

Footnote (9) on page 27. Hirschfelder, J. et al., see
[1] on page 39a.

Footnote (10) on page 31. Hirschfelder, J. et al., see [13 on
page 39a.

Footnote (11) on page 32. See [5] on page 39a.
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CHAPTER II

TURBULENCE IN GASDYNAMIC FLOWS

§6. Equations of Turbulent Motion

In turbulent motion the velocity, pressure, temperature, con-

centration fields and those of other gasdynamic quantities have a

very complicated structure. The complex structure of these fields

is due to the extremely irregular and random character of their varia-

tion in space and time. If the space and time scale of turbulence

(i.e., the minimum size of a turbulent inhomogeneity and the charac-

teristic period of turbulent fluctuations) is much greater than the

space and time scale of molecular motion (i.e., the mean free path

of molecules and the mean time between two molecular collisions),

the transport equations obtained in the preceding sections may in

principle be used to describe turbulent motion.

Experiment shows that the space and time scale of turbulence is

always greater by several orders of magnitude than the space and

time scale of molecular motion, and thus a description of turbulent

flows by means of differential transport equations is fully Justified.

However, direct use of these equations is in practice impossible,
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since the fields of gasdynamic quantitles in a turbulent flow, which
are always nonsteady, depend very strongly on the initial conditions

which are usually far from being completely known. This means that

a complete detailed description of turbulent motion is impossible.

4 However, in practice such a detailed knowledge of the fields of gas-
dynamic quantities is not even necessary in a majority of cases, since

we are merely interested in the average (statistical) characteristics

of these fiells. The fact that turbulent motion is described by dif-

ferential transport equations becomes extremely important in this

case. Due to this fact, it becomes nearly possible to establish re-

lationships among the average characteristics of the fields of

gasdynamic quantities.

The techniques that make it possible to establish such relations

in the case of incompressible isothermic fluids were first proposed

by Reynolds El]. By now these techniques have been desaribed !n great

detail in the literature [2], and for this reason we shall only t.rlefly
describe their main features. As we know, Reynolds proposed that the
values of all gasdynamic quantities in a turbulent f'ow bo represen-

ted as sums of the average and fluctuating components, and proposed
that only the average quantities which vary relatively umoothly with

position and time be Investigated. Reynolds suggested that, in order

to determine the average value of a gtven quantity, one should apply

ordinary averaging over a certain time interval (time averaging).

It should be noted that, along with this method of averaging, other

methods are also po33ible, including averaging over a dertain region

at a given time instant (space averaging) or averaging Cor a large

number of fields that vary both from point to point and rrota one tLim

instant to another (statistical averaging over ensembles). Without

discussing here the respective merits and drawbacks or various methods

of averaging, we shall only note that procedures most coionly used

* in practice enable us to measure timo averages of various quantliles,

and thus time averaging turns out to be most advisable

Footnote (1) appears on page 69.
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Following Reynolds, we shall now write the instantaneous value

of each of the unknown quantities or their arbitrary combinations as

sums of the average (M) and fluctuating (f') components:

(2.1)

By averaging, we mean time averaging

t (2.2)

where the averaging interval At is assumed to be sufficiently long
as compared to the characteristic period of the fluctuating field and
significantly smaller than the period of the average field. If the

average field is steady, i.e., its period i* infinitely long, then

the average value of r will be given by

1 2~.LudLI.(2-3)

As shown by Reynolds, in the process involving any type of

averaging (not only time averaging) the following relations must be I
satisfied, which chme to be called the Reynolds relations:

1) 1 r 4 ti-1 0";.

4) , ~ where a Is x~y,t or t;

1 (2.4)

Setting g - 1, g SO and g a h' a h - in succession In

Equations (2.4) (the prime vill signify from now on that fluctuating

oomponents of quantities are meant), we shall obtain the following

Important consequences of the Reynolds conditions:

, ' ., .- "fC7 *i. ~ ~(2.5)
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Making use of these equations, we shall establish the rules of

averaging for products of two and three variables that will be found

very useful below

U, (2.6)

The fluctuating component of a product of two variables iu obviously

equal to

(jg) j + r' + Tf + +g'r- - (2.8)

Now we proceed to derive the averaged equations of turbulent

motion for a multicomponent reacting gas mixture( 2 ). For convenience

we shall write the equations of continuity for a mixture and for the

ith component, as well as the equations of momentum and energy transfer

in tensor notation: subscripts repeated twice will signify sumnation

over 1, 2, 3 corresponding to vector and tensor components along the

x, y, and z axes (this rule does not apply to the subscript 1).

The equation of continuity for a mixture of gases (1.31) in

this notation will become

",r""%, " • ""o. ( 2.9 )

The equation of oontinuity for the i component (1.33) will be

transformed using Equation (2.9) to the form

0(2.,0)

I To write the equations of momentum transport, we shall make use

cf Equation (2.9) and the expression for the pressure tensor (1.64).

Footnote (2' appears on page 69.
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I

As a result we get

O(P (vi) = - A'P (2.11)

We shall use the form (1.93) of the equation of energy transport.

Making use of the expression for the heat flux (1.79), as well an

Equation (2.9), we obtain

+ T - , 2%) ,2.12)

In these equations, the subscript I signifies the component number,

and the subscripts J and k may assume values 1, 2, 3.

Applying the averaging process (2.2) to the equation of contin-

uity (2.9) and assuming that this operation may be interchanged with

differentiation with respect to position and time Lfourth of the

Reynolds conditions (2.4)], we obtain

=0.

Expanding the term 5 in accordance with the rule (2.6), we get

Thus the equation of continuity for a compressible gas becomes

In contrast with the equation of continuity for an incompressible

fluid, Equation (2.15) involves space derivativea of the average

fluxes of fluctuating motion. The incompleteness of our knowledge on

the general nature of turbulence does not permit us at the present

to give a numerical estimate of the contribution made by the term

8 6pr-) to the equation of continuity. Prom physlaal considerations

it is clear that

PTD-HC-23-723-71 414

* . ... . . . . . . . . . . . . . . . . . . . ... C~



However, the question of under what condItions it Is permissible to

neglect as compared to pv remains open. These factors give ihe

" derivation of the equations of the average turbulent motion for a

compressible gas (if density fluctuations arenot neglected) an essen-

tially formal character.

Now we take the average of the equation of continuity for the

ith component (2.10), and obtain

Applying to this equation 1a*,.,la)n (2.6) and perfrorming differentia-

tion on the left-hand side of the equation, we find

OV411.0~ - 4)- f7- - 4

Noting that the -um of the first and sixth term. on the left-hand

side of Equation (2.17) ia toro by virtue of the oquation of contin-

ulty (2.I., and dropping tho lait .tern on the right, slnee It is

negligiblo compared to the oeoond tem on the tame aide

we fi'n(3)

F'ootnote (3) appears on pa~ge 9.
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i
Inequality (2.18) holds because in turbulent motion, as we know,

the molecular properties of a medium play an important role only in

the region immediately adjacent t,. the wall (laminar sublayer), where

turbulent pulsations disappear. Since Viis the rate of molecular

diffusion, It Is clear that the fluctuating components of the diffu-

sive flow in this region will be small as compared to the average

components.

Equation (2.19) shows that In turbulent motion, in addition to

the transport of mass due to molecular diffusion, there is also trans-

port of mass due to the mixing produced by fluctuations of the density,

velocity, and concentration (ov 3 )' ca. The process of mass tranzpflrt

in a turbulent flow, due to fluctuations of the d,ýnsity, velocity,

and concentration, will be called turbulent diffusion in analogy with
molecular diffusion.

A dertvation of the average equation of motion (Squationa (2.11)
are the equations ue start with] does not involve any new features

as compared to t-e derivation of the averaged equation of continuity

C2,19), and is fully &nalogous to it. Therefore, omitting the Inter-
mediate stepat, we s04ll only give these Oquations In their final

form:.... t (2.ŽO)

It should be noted that, in derIving these equations, the terms con- I
taining viscosity f•ctuations were neglected as compared to the teats

containIng their average values (for a reason explaint. In the remark

concerning the Inequality (2.18)]. Equations (2.20) will be called

the Reynolds equations for a compressible gas. In these equations,

the quantities (pVQ'vk are understood to bt the conponents or the
tensor of additional stresses arising rom the presence of turbulent

fluctuations in the mass flow and velocity. These additional stresses

are usually called the Reynolds stresses.
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In obtaining the equations of energy transport in an averaged.

turbulent motion of a multicomponent reacting mixture, we shall

rieglect the fluctuations of the viscosity, heat conductivity, diffusion,

and specific heat capacity as compared with their average values.

Averaging Equation (2.12) and, as before, ini-erchanging the

order of averaging and differentiation with respect to position and

time, we obtain

L .pvý, v. I O** V1

, o .... ~I~ . - -- k(2 .21 )

We shall transform separately each of the four terms on the

left-hand side of this equation, using Equations (2.6) - (2.8). We

thus obtain

(J UJ

--=P - -~ - ft'v;, , i- p -- * .L @V

- 7-, +

' I'Ua• *,p

Ci + ) 2(doy +

0p~p'~ ---7, ±pvJvj2N

+--OU0 iVk k(L~) 0

SReproducedl from MM

t aL best available copy.

We substitute these expressions in the initial Equation (2.21) and

obtain
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cit f t Pt* h 8 .2 k <

0 87-2 7,18-
OTT Vk + Vk PVk -7 -TpO ý k+ ?

• ) " (i) (7) ((- (0) )

()(7) N• (•

-!. ali j, I C, (p••-• ' +• Z •, j)'jij +

• °' • O'i Y " 'i +

O -8-- - W "P- 7

(•,', (t)(20o) (LA')

.- + h-- (o . -* O''* Z -p, 4 ,-- -,,4-

0 (13) ( 14)

' 4's (2(..22
0(.) ((0) (2)

In the equation thus obtained, the sum of the second, fourth,

eleventh, and f if teenth terms on the left-hand side is equal to zero

according to the equation of continuity (2.15). The eighth, four-

teenth, and twelfth terms on the left-hand side may be dropped due to

their smallness, inasmuch as they involve a third power• of fluctuations.

It is not hard to see that the sixth and the eighteenth terms on the

left-hand side may also be neglected, since a < :: The fourth and

the sixth terms. on the r1ight-hand side of the equation may be omitted

for the same reason as the last term in Equation (2.17). To further

simplify Equation (2.22), we shall group together the fifth, seventh,

sixteenth, and seventeenth termson the left, obtaining the expression

(iiL ) 09 + ~'N ~

which as can be easily seen from Equation (2.20) is equivalent to

the expression
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Keeping this in mind and making simple rearrangements, we shall

P Fchange the energy Equation (2.22) to the following form:

- Cut (° LL Os p - .p

PV 5,- = -V +

Reproduced from 01 --, T. O-

best available copY. (2.23)

In Equation (2.23), the quantity (pvj)' hFT expresses the energy

transport of the it component that is caused by turbulent fluctuations.

The term 2(3vj)'ci7t expresses the energy transport due to turbulent

mass transport (turbulent diffusion). The term -pv•-v gives the

conversion rate of the energy of average motion into the energy of

turbulence as a result of the Reynolds stresses. The term .c:(pvO'Vi
i

expresses the total amount of energy transported by all components of

the mixture due to turbulent fluctuations.

The process of energy transport in a turbulent flow, which is

due to the density, velocity, and enthalpy fluctuations, will be

called turbulent heat conductivity in analogy with molecular heat

conductivity.

Now we shall perform the averaging process on the equation of

state (1.86). Using the rule (2.7) and neglecting third powers of
fluctuations, we obtain

""-, t., ".. (2.24)

SEquations (2.15), (2.19), (2.20), (Z.23) and (2.24) constitute

a system of equations of' the average turbulent motion for a multi-

component reacting mixture of gases. It must, howe-rer, be noted at

once that the uue of this system at the present time, even within
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the framework of the semiempirical theory of the boundary layer, is

not possible without a number of assumptions whose validity is in

many cases far from obvious. As already noted above, our knowledge

*" of the nature of turbulence does not permit us to estimate the con-

tribution made to the transport process by terms involving density

fluctuations. Therefore, in all existing theories that make use of

"the indicated system of equations or its modifications, the terms

involving density fluctuations are neglected. This does not mean,

* of course, that the density is considered constant. The average

density 5 is considered to be a variable quantity where it is

necessary.

Neglecting in the equations of the average turbulent motion for

multicomponent reacting mixture of gases the terms involving fluctua-

tions of the density, and in the equation of state neglecting all

fluctuating terms(, and considering below only the "steady" turbu-

lent flows in which the average velocity, enthalpy, density, etc. do

not depend on time, we obtain the following system of equations:

(P i()= 0,
(2.25)

11,,, "' = .. '- 00 'ja + ;•0,
pL)' ' -s - (2.26)

-0- 8 sj ( v (2.27)

.0 Below weý foma+ setSk- e~

0,,2 .

W-0

4).

Spitn ((2.29)

Below we formally set

'ii (2.30)

-) Vic UC~ T~ (2.31)

j (2.32)

Footnote ()appears on page 69.
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where F, !P and XT are the turbulent viscosity, turbulent diffusion,

and turbulent heat conductivity coefficients, respectively. in

contrast with the molecular viscosity, diffusion, and heat conductivity

coefficients, the turbulent viscosity, diffusion, and heat conductivity

coefficients do not describe the physical properties of a gas, but

instead the statistical properties of fluctuating motion. Therefore,

these coefficients are functions of position and time. It is impor-

tant to note that far away from a solid surface the turbulent trans-

port coefficients are much greater than the molecular transport

coefficients.

By analogy with the molecular Prandtl, Lewis, and Schmidt

numbers (1.103) and (1.105), we shall introduce their turbulent

analogs

r (2.33)

Le - (2.34)

Pr
7sc, • La - (2.35)

Although the turbulent transport coefficients e, X, and XT are in

general functions of position and time, their dimensionless combi-

nations PrT, Le, and ScT usually are slowly varying quantities which in

many practically important cases permits us to consider them constant.

The numerical values of Pr ,t.er and Sc7 have not as yet been accurately

determined. The few experimental data concerning the values of these

numbers are extremely inconsistent. Nevertheless, it can be stated

that in boundary-layer type flows near a solid surface Pr, and Sc,
z are close to unity; in turbulent Jet flows they are close to 0.5 -

0.7(5).

Using Equations (2.30) - (2.32), and for simplicity omitting

below the averaging symbols, we shall write the system of Equations

(2.25) - (2.29) in the form

Footnote (5) appears on page 69.
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-•0 (P .) 0 (2.36)

Pv,. ( PV , -P -). (2.37)

ark, 2 +" (2.38)

+ (2-39) 'k)

P -IT -o-" (2.40)

Making use of Equation (1.101), which in tensor notation has

the form,

(2.41)

and also taking into account Equations (2.33) - (2.35), we shall
bring the energy Equation (2.39) to the form

.,_ W ,_, l..% ,~ ,, -. J, -4-j. ..

(La, Ii act(2.42)

Passing in Equation (2.42) from the enthalpy h to the total enthalpy
H, defined by Equation (1.94), and using Equation (2.38), we shall

obtain

h, - It, 
+

(2.43)

The system (2.36) -(2.40), containing 5 + N + j equations (out of

N equations for concentrations, only N - 1 equations are independent
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since _A='), generally speaking, does not completely determine the

turbulent flow of an N-component reacting mixture since it involves
5 + N + J unknown functions Vjs P, p,. h, ci (i = 1, 2, ... , N) and

the undetermined turbulent viscosity, diffusion, and heat conductivity
coefficients c, 4.,, and XT, respectively. In other words, the systemS.
of Equations (2.36) - (2.40) is open. The fact that the system of

4 •equations describing the process of turbulent transport is open up to
C the present time has made it impossible to create a theory by means

of which one could make turbulent flow calculations, even in the
simplest case involving flow of a homogeneous incompressible isother-
mal fluid, using a purely theoretical method. All the existing
theories of turbulence in an incompressible homogeneous fluid are
semiempirical, since - in addition to certain Justified assumptions
- they are also based on a number of empirical formulas. The solu-
tior of the turbulent flow problem for the more complicated eases
involving compressible heat-conducting reacting gases is usually
based on a generalization of the aemiempirical theories, developed
for an incompressiblb fluid, to the Indicated more complicated cases.
however, even in this type or a semI-empirical approach, it is diffi-

- lt to use the system or Equations (2.36) - (2.40) in view of their
mathematical complesity. Therefore, in many impo'atnt cates- It !l

temeoi useil to deal with ••oplirleationt or this aystem provIded

by .iOundary layortwri

'g 7. -tationo or the ?uirbu ln lo uar Iae in a

Application of the ayatetm of Sq4uatlont (2.36) -(2A40) to f~lows
In thin boundary atrS fort.Aing en the walls of Channeol or on the

3urface of bodied during notloh through a Ca4 tedium leadd to a
considerable tImpllfleation or the systet. The aet or astutiptionS

*(rirst 1forntulated by L.. Vrandtl) that fora the basis or the proeset-
day boundary layer theory is well-known.

Let us consider a steady two-dimentional average flow with

averlW e velocities v u ad v v, correspondint to the dlrect!Iýn
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SsI -- x along the surface of the

body with the flow and s2 = y

U along the normal to the surface

of the body (Figure 1).

Following the basic idea

/~;,//~~ ;~advanced by Prandtl, we shall
/divide the entire flow field into

two regions: a thin region of

turbulent motion, adjacent to the

surface of the body, in which the

Figure 1 parameters of the flow deviate

sharply from their values on the

surface to the values in the

external flow (boundary layer), and the region of potential (vortex-

free) flow (external flow). Tho thickness of the boundary layer 6

will be assumed to be small as compared to the distance x. The

"order of x and u will be taken to be unity, i.e.,

x~0(1) and u -O(1);

then

£Y~O(6) and i~O(•)

and, consequently,

S-0(t) and

_-V &0) and owl

The pressure, density, concontration, and enthalpy will be assumed
to be on the order of unity:

•: ,•~~ -0o0(), P ~o00). C, -0o(1), h . Olt).
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Assuming that the terms in Equations (2.36) - (2.39) which

involve L, ., •, X, and f- do not exceed the order of the remaining

terms, it is not difficult to arrive at the conclusion that ,

and %, are no greater than - 63 and Y', are no greater than 6.

Using the preceding estimates and retaining in Equations (2.36)

- (2.39) terms of the same order, we shall reduce the system to the

following form:

8c. 4  O(s + ~(2.40)
8e. _O aj It - . P v i X (2.45)

__ -ap a r aul(.6
PU LPV~ . (2.46)

py Oxi I VO,4 (2.49)

*.•produced (tornanda

Uei a (U

S_,::~* t. ,, , . . , ,, ( '

(2.50)

'i'~~Pe P,".•"i""- .14,- 1);r- h

In Equations (2.45) and (2.4•8) - (2.50), the dilfusion rabe osm

generally given by E~quation (l.•3). However, as noted in Section 3, !

!i the effect oV pressure and thermal diet'usion in the boundary layer

•: Is usually small. This i• even more true ror a turbulent boundary
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layer in which a region with significant molecular transport processes

occupies only a portion of the entire boundary layer, and a portion

at that which is in many cases insignificant. Neglecting the effect

of pressure and thermal diffusion on mass transport as compared with

mass diffusion, the rate of diffusion will be given here by an expres-

sion that can be derived from Equation (1.57). Its y-component will

have the form

y (2.51)

Here T, is the effective diffusion coefficient given by Equation

(1.58). In the case of a birary mixture, T, becomes the diffusion

coefficient for a Uinary mixt,'-s, X11

Substituting Equation (1.51) in the equation of continuity for

the ith component (2.45) and in the energy Equation (2.48), and omit-

ting the ratio (2.47), the system of equations for a turbulent boun-

dary layer in a multicomponent reacting gas will have the form

f) (2.44)

+• - - ,,,+ ( , I0) ,( 3

The energy equati on in the form (2.50), upon substitution of
Equation (2.51), will be(ome

PlD-F- "+ C --4 7
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It should be noted that in a turbulent boundary layer there is

a "transition" (buffer) zone at a certain distance from the wall in

which the molecular and turbulent transport coefficients are of the

same order. In this region, the above boundary layer equations are

inaccurate, since, in deriving the general equations of turbulent

motion which in turn were used to deduce the boundary layer equations,

we neglected quantities (fluctuations of molecular terms) which in

the buffer zone play an importan-c role. Therefore, the equations of

motion (2.52), energy (2.54), (2.55), and continuity for the com-

ponent (2.53) in the form in which they are vritten assume that the

boundary layer is divided in two regions with different types of

flow: the turbulent core in which , , and the laminar

sublayer in which it .'>.k and 9 S..

The equations of continuity for the ith component (2.53),

written for the mass concentrations of the individual components of

the mixture, are inhomogeneous when homogeneous chemical reactions

occur in the flow (wi # 01. In certain cases, it is more convenient

not to write these equations for the mass concentrations of the corn-

ponents, but instead for the mass concentrations of individual

chemical elements, regardless of the type of a chemical compound in

which a given element Is bound. In this case, in the absence of

nuclear reactions, the diffusion equations become homogeneous. In
fact, If

Iff

signtfies the concentration of the kth element In the it component

of the mixture, where N Is the number or atoms or the k eletwng

in tihe I component, then wIcki wiU. replreotnt the tao rae of I
transition of the element k into the component I. Since in chemical

SSactions, the mas of an element is conserved, we hive

* U (.57)

The concentration of the eletmnt k In a miLxture w11 *viouulý be

equal to ConlseevvW'1y, %ultlpilylgt the dIfruiron EquatlcM

. . . . .. . . . . . . .*•~. P D , C ? - 2 -7 .. . . .. . . . . . . . . .



(2.53) by Cki and surming over all components of the mixture, we
obtain the equation of continuity for the kth element in the form

* J

(2.58)

The equations of the turbulent boundary layer are sometimes
conveniently written in terms of variables that were named after
L. Crocco. Crocco suggested that the longitudinal velocity component
u be used as one of the variables. The formulas describing a trans-

formation from the variables x, y to the Crocco variables • • x, u

are(6)

, ,-(2.59)

Upon malring the indicated change of variables in the equation
of continuity (2.44) and multiplying the latter by •- , we obtair

ti. ~ ~ ~ ~ aO,(2.60)

Tranarormiti to the v•riablets •, u and dividing through by

v/u+ Cl), the equation or m~otion (2.52) will bomo~e

4p 12- *

Dirr••entia•tts both didod or EquatLon (2.6i) with respect to u, we

got

SUbt,-atIn, t#erc by ter* both sides or this equatlo; rm 94uatlo

(2.60) and uto y&ui~i( )t we eliminate v and rimi

Footnote (6) appears on pW~ 69.
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u#[2$Lt$Z] - 2rA gjt .. (2.62)

We shall similarly transform the equation of continuity for the
ith component (2.53). Rewriting it first in terms of the new variables

and then eliminating with the help of (2.61) the expression on the
left in parentheses, and taking into account Equations (1.104) and
(2.35), we obtain after simple rearrangements

.4 1 2L(2.63)
Applying the transformation (2.69) to the energy Equatiorn (2.55),

and performtng, as before, straightforward sirpliftoations, we obtain

-W 1 t4V I rti4.c L)/

•, -, ( ¼ t,, ctft,

The entrg equat•,o. in the Croeco variable w-ritten In term:; of
the tnthalpy h can bo easily obtained rom Equation (2.64) by subati-
tutIng the equality (1.94) tor H and keeopng 1, mind that ,&'•.
Thus wo obtain

Eq~atlnS (2.62), (2.63), (2.6) (Or (2. ,
e~utl�non o sate (Z.40) onsttitute a ysteft o eq;uatlon' Or t.t

-% , . . ... 'N', ''~ -v J



turbulent boundary layer in Crocco variables. This system, similar

to the system of Equations (2.44', (2.52), (2.53), (2.54) [or (2.55)],

assumes that the boundary layer has been divided into two parts -

* namely, the turbulent core and the laminar sublayer. When applying

these equations to the laminar sublayer, one omits terms involving

* the turbulent transport coefficients and their dimensionless combina-

tions(t, ;... f[, Pr,, Le,, Sc,). In the case of the turbulent core, one simi-

larly omits terms involving the molecular transport coefficients and

their dimensionless combinations (u. .. :1,.. N, Lo. Scr).

For flows in the boundary layer over axially symmetric bodies

of revolution, the equation of continuity is written as

____. (2.66)

- and to the left-hand side of the equation of motion in the Crocco

variables (2.62) one must add the term •-.!Ž A . thus obtaining

"5 4;, O4

-.-. '- 0.~ (2-67)

Here r. rw(x) r,(0) iu the radiu- or the lateorl curvature of

the body. Equations (2.66) and (2.67) are valid only IC the thickness

or the u&ndary layer 6 is much smaller than Pw, i.e., 6 -c r.. This

oondition no !onger hold* for the rear portion or long# axially sym-

%etric b-odlea or ro" long ch.nnolu. All the other equations or the

Sturbulent boundary layer on anially aytetric bodies are emplelly

Identical with the equations o" a flat boundary 1&yer.

18. Seml-emvirloftL Theptioa or Turbulpn-ze.
Roylnolft slitllitode

* t.e syztem or equationd for a turbulent boundar-y layer which

Wau •iiA,4ifed In the preceding section la oter. just 1i44 thv initial

* i,-4o Z.'() - (2.4O), since the nu=ber or nuninowns erceeds the

PT'V-k-2 3-721-71
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number of equations. As we know, in the study of the turbulent

motion of an inuccmpressiblo homogeneous isothermal fluid, we must

resort to semi.-empirical theories of turbulence in order to close the

system of equations. All present-day semi-empirical theories of

turbulence of an incompressible fluid are based on a set of assumptions

Sconstituting a hypothesis which came to be called "the hypothesis of

the local mechanism of turbulent transport" [31. The most important

of these assumptions is the one stating that the menhanism of turbu-

tent momentum transport cpn be completely s.ecifiod by giving the

(ccal values of the derivatives of the averag6 velocities along the

coordinate normal to the direction of the flow and by specifying the

physical properties of the fluid. The effect of processes far from

the indicated point in `he turbulent flow is not taken into account

by the localization hypothesis. On the basis of the localization

hypothesis and dimensional ;IonsIderations, one can obtain formulas

comprising the semi-empirical tneories as proposed by Prandtl and

Karman

In Prandtl's. theory, it is assumed that a local variation of

the average velocity is determined only by the first derivative of

the velocity, du/dy. For this reason, direnrisional considerations

make it necessary for us to introduce the additional concept of the

length. of "the mixing path" without which it would be impossible to

set up a formula for the friccion stress. Using dimensional coILsider-

ations, it can be established that the only possl.ble combination of

the fluid density p, "mixing path" 1, and derivative of the velocity

du/dy that can yield the friction stress T is

To (2.68)

The quantitative expression for I (y) must be determined on the basis

of additional considerations.

Footnote (7) appears on page 70.
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In Karman's theory, the variation of the average velocity is

determined by the first two derivatives of the velocities du/dy and

d u/dy2. Similar dimensional considerations lead to a conclusion

about the existence and uniqueness of Karman's formula for the

friction stress

d (2.69)

Application of the semi-empirical theory to processes involving

turbulent heat and mass transfer is based on so-called "Reynolds

similitude". According to this concept, it is assumed that the turbu-

lent momentum, enthalpy, and mass transport coefficients have identical

values. This assumption presupposes the absence of the effect of

changes in the enthalpy and concentration of mass in a flow on the

mechanism of turbulent mixing, and is probably valid for not too large

enthalpy and concen ration gradients. The assumption stating that

the turbulent momentum, enthalpy, and mass transport coefficients are

identical is apparently equivalent to an assumption stating that the

turbulent analogs of the Prandtl and Schmidt numbers are equal to

unity:

P7 -sCt =.(2.70)

In quantitative terms, Reynolds similitude can be expressed as

dby

or

T 7' _d7 (2.72)

When studying turbulent flows, in which one must take into

account the effects of compressibility, heat and mass transfer, chemi-

cal reactions, etc. (all at the same time or some of them), the only
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possible method involves an extension of the semi-empirical theories

of turbulence in incompressible fluids to these more complicated

cases. The extension in question usually reduces to direct use of

the semi-empirical formulas of Prandtl (2.68) and Karnan (2.69). Here

Prandtl's and Karman's formulas retain their previous form, with the

only exception that the density p is considered to be variable.
Regarding the value of the turbulence constant K (i;e recall that the

mixing path is usually given by Z = Ky), it should be noted that,
even though there is some experimental evidence that the value in

question is affected by compressibility and heat transfer, at the same
time the evidence we have does not permit us to make any numerical

estimates of this effect (8) For this reason, the constant K is

usually given the value it assumes in an incompressible fluid,

(K 0.39 - 0.41).

§9. Integral Momentum and Energy Relations

In the theory of the boundary layer when construcuing the so-

called (approximate) integral techniques of friction and heat transfer

calculations, one uses the integral form of the momentum and energy

conservation conditions. In order to obtain these conditions, we

shall set up the boundary conditions at the surface of the body and

at the external boundary of the boundary layer for the velocities,

total enthalpy, and concentrations of components. To make the argu-
ments more general, we •hall assume that the surface ol' the body is

permeable. These conditions are

The second condition at the wall, v a vw, deseribea it pemabIlity.
If the wall is not permeable, then vw - 0. The last three conditiona
provide for the smooth transition of the velicity, totml enthalpy,

and concentration profiles at the boundary of the boundary layer with

the external flow.
Footnote (8) appears on page 70.
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The external flow will be assumed to be isentropic, and thus

the velocity at the outer boundary Ue will be related to pressure on

the surface of the body by the Bernoulli equation

",.:-p t d!f, (2.74)

In deriving the integral relations, we make use of the boundary

layer equations expressed in terms of x, y. Here the equation of

continuity (2.66) will be

+ P ad( S(2. 75 )

where v - 0 for a plane flow and v 1 1 for an axially symmetric flow

In the boundary layer.

Integral momentum relation. Using Equations (2.74) and (2.75),

we rewrite the equation of motion (2.52) as

-a( = ' a. - mI ••
+~ GX+~;~W) + Pul,

Multiplying both uides or Equation (2.75) by U., we obtain

3ubtraeting both aldet of the preceding equation from this equation,

we arrive at the osprei•son

4- '•-) + IWO. - U4 ) (11A - pi)

+ •U U) A it" )

Intoerating thla expreddion aoros3 the boundary layer along y

between 0 and infinity, and introducing the integral thicknesses:
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. C (2.76)

which is the momentum loss thickness, and

S -•(2.77)

which is the displacement thickness, and also using the boundary

conditions for the velocity (2.73), we obtain
-•_ ( ,U..) _5p d.- j

, • . . drdj

d.•1 (2.78)

where

is the friction stress at the wall.

Performing differentiation in (2.78), and noting that

P- - ;, (2.79)

2

upon dividing both sides of Equation (2.78) by PeUe we obtain the

integral momentum relation

dr~
me da pU; pU (2.80)

Here

// (2.81)

is the form parameter of the boundary layer, M1, Ua•, is the Mach
number, ae is the velocity of sound at the outer boundary of the
boundary layer. The prime indicates a derivative with respect to the
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x coordinate. It will be noted that Equation (2.79) can be easily

derived from the Bernoulli Equation (2.74), upon writing the latter

in the form

,d?, dz U .

Now recalling the definition of the velocity of sound

(dP, (2.82)

we arrive at once at (2.79).

The integral momentum relation may also be written in a somewhat

different form considering that

and, consequently,

U; (Mee)' M' a M'
+ a +2-M4 M 8 a a M

M; y *- M) M2 M:M M..

', 1 - 4 m -2a (2.83)

As a result we obtain

M,'M2 + X - M;"
+ * dr- ---- .(2.84)__ __ _ (!:d• + -•, t+ ,_ . -•

Here

(2.85)

is the local friction coefficient, and

=paz i

01a" P', (2.86)

is the relative mass flow across the surface.
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Integral energy relation. The energy Equation (2.56) will be

transformed with the help of Equation (2.75) into

*P11 + e, .. Uf d y +\ r

+ [L(Lei- - i)+ -(Le,- ] ,i +

L- "- i \

Noting that H = const, we shall write the equation of continuity

as

~j drv,
-.- (pul4,)+ o (pv~+uI.-g=0(p /, (.ovss,) + 0>,I .

0Z 0)r

Subtracting the preceding equation from the last one and integrating

across the boundary layer with respect to y between zero and infinity,

in view of the boundary conditions (2.73), we obtain

00

.$ j.. ,Pu(HI,-- II) I = qw. (2.87)

where

-....(Lot,-- 1) ,(2 .88 )

is the heat flux from the gas to the wall.

Introducing the integral thickness of the energy loss

- " S I L) (2.89)

Y 0~

in view of Equation (2.79), we obtain the integral energy relation
in the following form:

U;- (t -Y " & . o+n.,(4 ', (2.90)
•.'M" aft + i ifUll
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Introducing the dimensionless heat transfer coefficient (Stanton

number), we have

C,. U/.l 1, -;,. (2.91)

where

H,= + It,-, '(2.92)

is the equilibrium enthalpy of the surface over which the flow occurs

without heat transfer, and r is the recovery factor characterizing

the nonadiabaticity of motion in the boundary layer. Using Equations

(2.83) and (2.86), we bring the integral energy relation (2.90) to

the following form:

__! - 6" -4., !--h,•id M4  t - M 2 4

= C,, - C("Z" R"). (2.93)
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FOOTNOTES

Footnote (1) on page 41. A detailed discussion of the methods of
computing various averages in the
theory of turbulence can be found in
the monograph by A. S. Monin and
A. M. Yaglom that was quoted above.

Footnote (2) on page 43. A derivation of the average equations
of turbulent motion for a compressible
howogeneous gas was first given in the
paper: Van Driest, E.R. Turbulent
Boundary Layer in Compressible Fluids.
Journ. Aero. Sci., Vol. 18, No. 3,
1951, pp. 145-160.

Footnote (3) on page 45. It should be noted that the operation
involving averaging the mass rate of
formation of the ith component wI is

not written explicitly in this case,
since today, when using the averaged
equation of continuity of the ith
component in turbulent flow, wide use
is made of an approximation in which
w is understood to mean the expression

for (wi) in which all variables are

time averages. The attempts to take
into account the fluctuating terms in
the expression for wi lead to difficulties

that have not as yet been overcome.

Footnote (4) on page 50. For the equation of state we use the
same approximation as for the mass rate
of formation of the ith component wi
(see footnote 3 above).

Footnote (5) on page 51. Concerning the turbulent Prandtl
number, see Section 15.

Footnote (6) on page 58. For a derivation of tne transformation
formulas, see the monograph by
L. 0. Loytsyanskiy "Laminarnyy pogran-
ichnyy sloy" (Laminar Boundary Layer),
"Fizmatgiz", Moscow, 1962, p. 335.
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Footnote (7) on page 61. For a detailed exposition of Prandtl's
and Karman's theories see the monograph
by 0. Schlichting, "Boundary Layer
Theory", "Nauka" Publishing House,
Moscow, 1969.

Footnote (8) on page 63. This question will be considered in
detail in Chapter III.
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CHAPTER III

TURBUL"ENT BOUNDARY LAYER IN A HOMOG0ENEOUS GAS FLOW
AT SUPERSONIC VELOCITIES

510. INTRODUCTION

III thsChatOr we are going to discuiss tho theore-tical An-d
~*rt~enAl xisults' af the *tu4±os4 deallng with charact ris-tics o

thettat dntboudar laeron 4 nonpermeable uurface in a homogoneous
£14 C~wit iseupersonic vieIolocitv. Tht or thelt gf as flow,

a~~cn~~fe~" 0sctiiythtncecICAl MUtIOM t sOCCUr In tht flOW.
A .A!fourt y of tho results rig ne hikre refer to flwow In whith the

speethzhenCd4apaty of the ~ac r-.W be V004lderod to bo constant.

,t ,oii of tur0ulent V~oundary layer clot,. t.1n of, uper-
4pu- volcý11itie and bodies of a tr$ hpe1; at th# ptvsent tI~te
4ý%111 tar t~mro Co~pIptoly bloine 44lV0d. As we anew, the pr-Oblae or

nows,.t igiLare pvositivv proomsure&dln doedS pot h-avo a ýAlk

suprsnicn~oitesenab 0Au tQ) deteitine'W the 4kih 'riCtIO 0i In



I.
heat ti-ansfer coefficients only for bodies of relatively simple shape
(plates, cones, neighborhood of the citlica. point of a blunt-nosed
body, etc.). The most significant rn.sults (experimental and theoreti-
cal) wr*re obtained when studying the flow near a smooth flat plate

I* posltloned along the flow.

The literature devoted to a computation of the drag coefficient

for a smooth flat plate contains a large numbelr (several dozen) of

approaches. In accordance with the basle assumptions used by various
author., wte can ditingulsh three di•ecrlQl;n of research that coexist
at the preient time.

MOe first of theue I." b~aaed On a airennaiLzation .Yf thle rftirntdas3
atho aoit-qmvvriel noreso ttarbuienee {tý68) iPrsndtl I n

(Z~ C.69n) obtainedi for A~n inoapesil lud tfo tM't a .A' r

1 64as Moving :at a large0 vQlocity. MiWhdS used0i In th14 4pr~oach canr
iAlso be hvol~ A4 mthotods Using thelcrt¶i tl.4tyr-' I

I

qnth4 Ifr1& te.0 4-aeoM- .4'eooath4 0eh4A'tt a u r!k I-
a -law %elod4ýt p.rofil. n.'th th fre.Art an ic-W *!t4¶

N - o

~T *il' t~~4a~l
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A majority of papers belonging to the first approach make use of

the assumption that the tangential friction stress T is constant across

the boundary layer and equal to its value at the wall, i.e.,

I -COUAt . (3.1)

In reality, as shown by experiments done by Klebanoff (1], in

an incompressible turbulent boundary layer on a flat plate (Figure 2,

circles signify the experimental points obtained by Klebanoff), the

dependence of the turbulent friction stress on the lateral coordinate

Is nearly linear (straight line in FIgure 2), and can be approximately

described by the expression

S.....o •)-'(3.2) i

Where 3 i- tha thickness or the boundary layer.

h•vertheloaao the 0um~tlon (3.1) doeo: not Introduce a ienifil-

Cant Orror, 44 ispared with into the calculation o' the into-

gra -h t sisof Itho boundary laye~r (frictlie, displacement

Thcten ~me~fntun lo!s thicknes-aot et.), Thisa t-oowes easy to .4Q

Wri~this WA 4uatlon In the frpm

I,? J 0-, .,

te '04te that 31t Is the derIVAtUve dutdy thAt depend4 etn the4Irbtn

or 'mte tmrthehtlal ttNSdet' ;girods the bdundary I-ygr (this can he Seen .1
Wvou Prrndti't And 9art--W4 froulas (2.0~) and Qt).0 th zmgluft

erorinroucdIII irk by amtut#ptOen (3.1) will ob4otYV ty4 'gccul tiekr

t410 ezterna woud&j Ofk the kboundary layer, where acodnzte 1
I t. htherea-, tin fat t v - 0 ort y ý1.Wu i th.4c case the 40-riVa"

titt15 lWpiled L9 auP0 OMAll Ouianttty 41 -Ufe) (1110 gan-
tror

ata
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celow, the friction coefficient at the wall is cf - (1n 6**). This

also coimtrbutes to a reduction of the error made in the calculation

because of the assumption (3.1).

STo justify the assumption (3.1), we can also use the following

Ssimple arguments. Making use of the usual logarithmic velocity

profile [2]

U

"1 ((3.4)

it is easy to obtain from Equation (3.?) the following relationship

between the friction stress in the boundary layer arid the velocity:

41

I 4I Thjeut o -cmutto ae

Jon Equation (3.5) for three values09 -tI' of the friction parameters ai0 o 20,

Figure 3 30, 40 are given in Figure 3. As

we can see from Figure 3, for example,

for 0 = 30 (this means that the Reynolds number is .10l7) in the veloc-

ity interval 0 < u < 0.8 the friction strels varies within the range

0.9 < i/T < I which justifies the use of (3.1) in practical calcula-

tions.

When using (3.1) from Prandtl's and Karman's formulas, (2.68) and

(2.69), we can obtain the following expressions for the velocity

profiles:

C P( (3.6)

CIA-.(,' ."Cl oxp [ ,k./ .
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Here

J (3.8)

C11 C 2 , C3 are constants of integration; x is an empirical constant

of turbulence whose value is usually set equal to its value for an

incompressible fluid, i.e., K 0.39 - 0.~41.

Equations (3.6) and (3.7) lead, respectively, to the following

expressions for the momentum loss thicknesses (2.76):

r P N "it (1 - d) exp [xt P." 'da] da.(310

The differences among studies using the first approach are

usually contained in the assumptions regarding the constants of inte-

*gration~ C 1 3 C 2, or regarding the expr'ession for p/pw, or finally

regarding the methods used to evaluate the integrals in the expres-

sions for the momentum loss thicknesses (3.9) and (3.10)(1).

The pape-I that started a wide use of the semi-empirical methods

in the first approach was written by F. I. Frankl' and V. V. Voyshel'

[3]. in this paper, the authors decided to follow the approach of a

direct generalization of Karman's method Unoruntey the

degree of a:j-proximatiLon used by Franki' and Voyshell [~4] enabled them

only to perform calculatinns for Mach numbers not much lar'ger than

unity.

The transition to large Mach numbers, apparently, would have

required even more compiicated computational techniques than those

already used by the authors, or it might have required a di.rect use

of nuimerical methods.

Fo-ot no te 1, opŽr on pagFe 178.
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After almost 25 years, the same approach to a generalization of

Karman's formula (2.69) to the case of supersonic velocities was taken

by Wilson [5], who had analyzed a flow over a thermally insulated

plate.

A more general problem of the drag of a plate in a gas flow in

the presence of heat transfer but using Prandtl's formula (2.68) was

considered by Van Driest [6] almost simultaneously with Wilson. Later

Van Driest [7] obtained the formula for friction on the basis of

Karman's formula (2.69).

A method developed by V. M. Ievlev has become widely used in

practice [8].

The semi-empirical methods have been further developed by I. P.

Ginzburg and A. A. Shemets [9], L. Ye. Kalikhman [10], S. S.

Kutateladze and A. I. Leont'ev [11], L. G. Loytsyanskiy and Yu. V.

Lapin [12], L. M. Zysina-Molozhen and I. N. Soskova [131, and other

authors.

Now we shall briefly characterize the methods of the turbulent

boundary layer calculations which belong to the second approach. It

must be rioted that the theory of the isothermic turbulent boundary

layer in an incompressible fluid, using a power-law velocity profile,

*is based on a well-known experimental fact first discovered by Blasius.

In a turbulent flow in a straight circular tube, the varA.ation of the

velocity across the tube as a function of the distance from the wall

and the friction stress at the wall as a function of the Reynolis

number, calculated from the velocity on the axis Ua and the tube

radius ro, obey a power law

(-Uui\7ul l'"• (3.11)

A use of the power-law vcwocity profile for the case of external

flow by an incompressible fluid made it possible to obtain a powvr-

law dependence of the friction coefficient on the Reyrioldu number,
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calculated in terms of the velocity of the oncoming flow and the

length of the plate. The value of the exponent in the expression for

the velocity profile

( - (3.12)

where 6 is the thickness of the boundary layer, is usually selected

Oy demanding that the result agree with the experimental data. It is

then explained that tho e,:ponenr varies depending on the Reynolds num-

ber within a fairly wide range: 6 < n < 13. This fact, however, is

of no essential importance :,ince - if other parameters do not affect

t>'e ;aluo 'f tihe .,Kponent - it is always possible to choose the

most satisfactory value of the exponent within the required range of

the Reynolds numoer.

The situation is different for a compressible gas. In this

case, the exponent is affected not only by the Reynolds number, but

also by the Mach number and a temperature factor, which greatly compli-

cates the selection of the correct value for the exponent. This means

that some of the theories of* turbulent boundary layer in a compressible

gas, based on the power-law velocity profile [143, are satisfactory

only within a relatively limited range of any given parameter
S(Re V Me , Tw/T e).

Among methods that belong in the second approach, we shall

mention, in particular, the method of the "effective length" proposed

by V. S. Avduyevskiy [15]. The method is based on power-law velocity

atid enthalpy distributions in a boundary layer written in terms of

the Dorodnitsyn variables, and on experimentally established formulas
for the drag and heat transfer on a flat plate. A computation of the

drag and heat transfer in a turbulent boundar'y layer of a compressible

gas for- moderate longitudinal pressure gradients reduces in the final

analysis to a calculation using the formulas for a flat plate. Instead

of the actual coordinate giving the position of a p~int on the surface
of the body, they use a certain "effective length" which can be
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calculated from integral conditions.

The third, so-called empirical, approach to the problem of a

turbulent boundary layer in a compressible gas is essentially an

attempt at extending the well-known relationships, obtained for

incompressible fluids, to the case of a compressible gas by referring

the physical parameters of a gas to a certain temperature, selected

in some fashion. Thus, as early as in 1935, at the Volta Congress

in Rome, Karman [161 proposed a formula for skin friction in a com-

pressible gas flowing over a thermally insulated plate. The formula

was set up without any theoretical justification by starting with a

simplified assumption stating that it is possible to use the same

formula for both large and small velocities, as long as the physical

parameters are determined at the temperature of the wall. This for-

mula for the mean friction coefficient has the form

+ i_2'l g(c,Retsd-~ n 1g(t + yM-2). (13

A comparison of Karman's formula with experiment has shown that the

use of the wall temperature as the defining temperature in a boundary

layer results in an exaggerated effect of compressibility.

By now, many authors have proposed a large number of empirical

formulas for the "defining" temperature. Some of them are given below:

r ap J p o r M

!OOP 0,42 + 0,032M, + 0,S8 . for M. 5,53);

TO

0,70 01. ,023Mt + 0.58 W'o * , )

It should be noted that the last two formulas for the defining
temperature were obtained from an analysis of the numerical solutions

of the equations of a launinar boundary layer. Even though these
expressions are used when calculating friction in a turbulent boundary
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layer, one should nevertheless keep this circumstance in mind. A

computation using these formulas gives understated values of the

friction coefficient.

A method which is different from others, but still essentially

empirical, was developed by Spalding and Chi (2). A comparison of

various methods of calculating friction in a turbulent boundary layer

on a flat plate with the existing experimental data, done by Spalding

and Chi in their paper, has shown that the most accurate methods are
(3)those proposed by Wilson, Van Driest (method based on Karman's

formula), Kutateladze and Leont'yev (4) Spalding and Chi.

Taking this into account, Section 12 will describe the semi-

empirical method of calculation, leading in the case of a thermally

insulated plate to Wilson's results and in the case of a flow with

heat transfer, to Van Driest's results. At the same time, we shall

briefly present Spalding and Chi's method (Section 13) which to a cer-

tain extent uses the results of the semi-empirical method. The

simplicity and high accuracy of this method make it very convenient

for engineering calculations.

§11. Experimental Studies of a Turbulent Boundary

Layer in Supersonic Flows (Friction and Velocity Profiles)

Among the numerous problems of experimental aerodynamics, the

problem of determining the turbulent skin friction has been for many

years one of the most urgent and widely studied problems. Without

presenting the experimental results regarding the characteristics of

the turbulent boundary layer in an incompressible fluid, we shall

limit ourselves here to the most important and interesting experimental

results concerning the velocity profiles and skin friction in a

Footnote (2) appears on pageI78.
Footnote (3) appears on page 178.
Footnote (4) appears on page) 7?80
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turbulent boundary layer of a compressible gas, both on thermally

insulated surfaces and on surfaces that can exchange heat with the
* flowing gas. A majority of the results described below were obtained

from 1950 on. It should be noted that the experimental results avail-
* able today are far from complete. This is particularly true regarding

data on the velocity profiles in a boundary layer.

Among papers dealing with the characteristics of the boundary
layer on thermally insulated surfaces, we shall consider those by
Wilson, Chapmnan and Kester, Coles, Korkegi, Matting et al., Moor and
Harkness. Among papers dealing with surfaces with heat exchange, we
sha~ll consider those by Lobb et al., Hill, Sommer and Short, Winkler,

Kozlov. The results obtained by other authors will be Included in

the resultant plots.

Experimental Studies Using Thermally Iu~sulated Surfaces,

Wilson's experiments (5 At certain sections of the boundary

later on a thermally insulated flat pl~ate, Wilson measured the velocity

(310)

R. Wilson's experiment 4Et.

0 42 q~45 48~ V 041. wilsonut expraktitn

A'______ Y quatlan: (3.07)

7not ot n ~ aj 7
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profiles using the Pitot tube. The numbers Me and Rex were varied in

the experiments within the following ranges:

St1,579 •< M, < 2,186;
2," •< Re., - 10" •<•

As an example, Figure 4 shows the velocity profile for M - 1.999
e

(circles signify experimental points; the solid line will be explained

below in Section 12). Using the velocity profiles, Wilson determined

the momentum loss thickness 6**, anc thcn computed the mean friction

coefficient [L•e Equations (2.76) and (3.64)]. The values of the mean

friction coefficients thus found are plotted in Figure 5.

Chapman an( Kester's experiments [20]. The measurements of the

mean friction coefficient cF were made on the surface of a long cylin-

drical body of revolution at subsonic and supersonic flow velocities

orv the tXollowtng range of M and Re : .ql < M < 3.60; 4 Re..
<l .< . Th nictr friction force was determined diroetly by means

or t.;t.,- on. twO model3 (model. are sletohed in Figure 6). The cx-

.,rit"'•nt vl.q lravred the d .!f'erence I,-twer-n the total drag and wake
,t"., r,,spet Ively, for Pamh model of the cone- 'alinder cnd the cone:

STratnsition wiro The difference between these two

values gives the frictjon force

First mode... lo g acting on the surface of tha cylinder:First•dolHousing

Second model Qj,,) - (Ot - (0.

Fle'ure 6 The results are shown in Table 1.
The value of the mean friction co-

efficient in an incompressible fluid

(c )exp by which friction coefficients, mea.wurod for various values of
Me, were divided was determInied experimentally. In the lower row of

the Lable, thte same coefficients were divided by the mean friction
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coefficient CFO calculated using Karman's formula (

TABLE 1

M 0.51 0.81 1.99 2.49 2.95 3.36 3.60

cF/(CFO)exp 0.985 0.929 0.746 0.671 0.623 0.578 0.551

c,/cp 0  0.994 0.924 0.757 0.672 0.630 0.571 0.552

Experimental values of the friction coefficient c 1, are plotted in

Figure 7 as functions of the hex number for various values of Me. The

values of the friction coefficient

S- - cFO for Me = 0 were found using

Karman's formula (3.59). As can be

- -.ii "seen in Figure 7, the plots corres-

Sponding to various values of Me are

parallel to the curve for M e=0,

which means that the ratio cF/CFO
4 6 8 1 o 5 does not depend on Rex in the range

of Rex investigated. The layer

Figure 7 structure of the experimental data

for the same value of Me i due to

the use of cylinders of various lengths (the experiments used cylin-

ders for which the ratio of the length to the diameter was Z/d = 8,

13, and 23).

Coles' experiments [211. Coles experimentally determined the

values of the local and mean skin friction. Local friction was

meaýsuved directly by means of a "floating" element built into the

surface of a plate placed in the test section of a supersonic aero-

dynamic tunnel. Mean friction was determined from the momentum loss

thickness S** [Equation (2.76)]. Me in the experiments ranged from
e 6M, =2 to Me = 4.5, and the Reynolds number - from 3.10 to 9-10

The experimental results are listed in Table 2.

83



TABLE 2

Me '.,57 2, 3.75 I0 V 4,51 4 F6 4,5'? 1.5 4

", . 4,84 8,32 .3,54 7,25 3,52 63,83 3,37 6,91
V,

C1.1O' t,81 1,66 1,62 1,38 1,48 1,.22 t,55 1,,26
0,705 0,7000,595 0,570 0,530 o, 5(y 0,535 (1,495

0,715 0,7100,635 (1,610 0,590 0,563 0.600. 0,56(0

Korkegi's experiments [22]. The local friction on a flat plate
was measured by means of a "floating" element, similar to Coles'
studies. M was held constant during the experiment (M = 5.8), ande •e
the Reynolds number, calculated from the parameters on the outer
boundary of the boundary layer and the distance from the "floating"
element to the front edge of the plate, was varied from 106 to 4 x 106
Along with friction, Korkegi also measured the velocity and tempera-
ture profiles w4ich were then used to calculate the integral boundary
layer thicknesses 6* and 6**, and the parameter H* = 6*/6**. The
experimental results are listed in Table 3.

TABLE 3

It f It'l

5,787 2•77 0,0375 0,529 1.4,10 1,3M 0,403 0,407
5,770 2780 0,0301 0, 50 1 4,1 1,6275 0, W 0, U135,702 3MIJ 0,03, 0,3U I 1,221 0,100 0,0 J
,,805 401 0,0385 0.'01 15,7S. ti 1,IN 1)U,337 (1 . IM,

in Table 3 in the next to the last column, the ratio c /cf 0 was cal-
culated for a constant value of Re**, i.e., cfo was determined for
the same value of Re** as cF. The ratio of,/co in the last column of
Table 3 was computed for

Re,'o ,, (, R to, < ),
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The Matting, Chapman, Nyho9m, and Thomas experiments [23]. These

four authors have performed an extensive and thorough experimental

investigation of the turbulent boundary layer on a thermally insulated

surface in the absence of a longitudinal pressure gradient. The

experiments yielded data on the local friction and velocity proflle3

for Mach numbers ranging from 0.2 to 9.9 and Reynolds numbers rantring

from 2"10 to 1000. The working substance for 0.2 _M e <.2 was

the air, and for 4.2 < M < 9.9 - helium. Since the adiabaticSe
exponents (ratio of the specific heat capacities at constant pressure
and volume) y = Cp/C for the air and helium differ significantly fro;:.

p v
each other (yair =,,1. , THe = 1.66), the similitude parameter was of

the form (y - 1) M-. In this case, the experimental r-rults obtained
e

in a he]lum stream for (Me) will be equivalent to the resulta obtained
e He

in an air stream for

Wf~ -,+. ( A)I,.

The validity of this relation was coni'iimed by e*xperlinent:s. in
particular, Pig•ure 8 shows the velocity profile In thv air (M. ,

and in helium (Me * 3.25) for the same Reynolds numher Re 6.2 x t0'
*ini the uppLr drawing and Rexa 35"106 in the low•er one.- Th e veoel" ct:
trofiles determined for varlotus rases ar-e in very good arteement.

Tht. results of the velocity mearu,'eent;t In the L'oundary Inyo
for various0 values of (Me)N l are presented in Fl uree 9. Thi ixes

neasure the univerosal coordinates o and n [:Aoet luIantl-no 3.$t . A:i

we can see from Figuturv 9, In the turbulent rovte, lhe *¾eh numl ,' 1.%, ,
nA+rdly any offetlkt on the form of' tho unIver."al prOClit' "04I1".11 n,,

~is des;crtbed well by a logarithmie formula. As we %pproAch the will
_(.1n the laminar sublayer), we obUeive a ia'roe seCarter 'it thi l 't

-- _ntal points+ and their displamement upward frpom th', Curve 4 .-
the author's opinion, measnurements near the wall are not ri't •nt-

An catilmtte of the laminar cublayer thie knc .. ku.On-, thv .'xpvrr... .

data th.ws that thoe hcne. increase+ w'th M,.. t:r (N") . ,
It aznount.- to 10; of the thIckness of the enti:r hound&y I
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Along with the measurements of the velocity profiles, the authors,
also me-asured the local skin friction with the aid of a floating ele-
*Ieat. The results of these measurements are shlown in Figure-s 10 and
Il. As ma- be seen from Figure 11, the Reynolds number does not affect

4ý Turbulent flow 71

V A *T Air-- F-'

r So
"flargt4 Indie-ate: t~he Oxweriesvnthl POInt4; Obtained 1"- 1=4ll1-tt1

rt)"utitt, Ck(Ro ifte.) 0.6] (L 1$ h loenth or kthe rIvoý,). T'ht!r
rnroiterd difficultiesi wtn n ~ttemptinr to rttw Murt*l %

frIctl'nit othes pointg. vie diriffiut etii wvro. &n4 tn i;-fý; I'-
c54VeIc'pokv etit of turitflont flow fror (Re /Rn.) Q.

* r~to f ~of lnead friction wln4 veIOVcity rf e ;

* ~ ~ ý ui terto !vat~o~ns uis U act that theygcqpui:j Ll o ý~

ves. ynvyr1 1 zd n kifltlvere, tap Rex 11 1. k! h I''j
wo~t itasukre•I by nw?'nns of a flgoatin't Oelrent, tkho Ast - w;u t~

A f~rai ctlion On the Wall 1Of a iue¶nicdi ?fUr-or ;trtct Sný i' -a %t a4-f:;
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TABLE 4l

381 2938 1,86 22, 7 101,0 .,21 8,7 ,O0('JOO
-zs 2-:. 4 ,61 2t,', t6,9 %,26 6,1 t 0,0009-33

L), 8I35 2)5 S,01 Ln1,0 101,.' 2,12 3,76 0,00093s
S97 ý49~ Si ,82 Zi40 111,6 1,82 S, Is 0.001M0
3 7i 3t0 ,7 30,M 134,1 5,57 11,2 0,00m~i

1.1) 317 6,76 31.,3 -1. 4, iS 873 0,O00M71
38 311 7,0O X -10, 5 21 ,12 0.000311a

6,iJ 10 317 I53.5~ 7.01 1A.1 0,000i03

' ~ 8,31 310131,59' S,95 it's 0,000M9

Between Gas~ and) a Surrace or' bodleg

Lobt. Winkler', and Persch exp Ximnts ,51 14h e papers discussed
in the prmeedinZ portion or this 4ýcction were dew'vtedt minly to the
investigatiori or' akin friation on thermally Insulated aurruý,4, and

yllio;@ rlt~ve).y little int'orma-ton ahout chratelticu of the
tut"'tbulnt bOurndaVY 14Y~t Jtkch U vQ10citY 4nd t r4Mature PrOe'10e-

'to paper written t~y theie throe wih*- 14 ono or' thotm rame

P3&er4 in 1whigh ai Uee.nto m~ do not only of' t'rictlorn bu~t
m'th nd~utd ctaatvri-tcs of the aP ot damr lao Th v
!n~dtrtk 2 tho bundalg't 1aier W&ere on thw w~l -or 4 f'~t

thd'a undeo' ineti tog. L~oal f'.14,nlo iatn detot-mne4 Cfoje,
tho Volocty grad'ent nebir thl WAI -it wvI U thrn~uh the NWM04

tuePrAthe o~e~n. f' thgt-za1 t'i4xzý In Ulm e loo

Th vrit-, ":~rmnr ,Qf' loe' g and a characorrlI

of f1now reglrwe; !n Whlch the ue 1'n V ~e Made are given In



TABLE 5

I 11111.
M;1 !* I _ _._ _

Tr~ ~ TJ" 11.2.1 2.A7 ., if .41,05 11,05 441 C'i.~3 li,15
* Ro' 531 li-SO 7050 7370 '4550 1,4,t 120407041 83

0,3720 ,a,25 0,3 tie)q.h710,252 0,242.0,21110 Z20
;l! l j I .I -, I ,

M' 1, 10 ~09M r0, 30 
10,64C 0,636!10,5000 000!

The value of c was found for the same values of Re** for whichif.
c were measured, using Karman's formula

0,02fl3.17

The Re** number, calculated from the momentum loss thlckness,

was chosen as the characteristic heynolds number due to diffIculties
that were involved in determining the beginning of the boundary layer

on the wall of the tunnel, and due to the fact that it waa Impoxzible

to use the Rex number calculated in terms of the length. The depen-

dence of (c,/C f)Re** on the temperature factor " - Twvire ( ia the

recovery temperature) i1 also ahowr in (Firu.'e 12). As can be .oen

from the plot, the ratio (cr/CfO)Re** depends slightly on heat exohanre.

r-~~-''io g-r >1 ateat Interest In thve
paper under couaideration are mcaauro-

I t1 ents of the velocity pro'iles in

,, *- the boundary layer.

Vlore I3 Ihowi the volol ety
F'icure 12 pro'ile ror w - ti,3 and two vafloez

of thie hf~at ~~hu~ t
lar'gezt and thle umalleat for the ven, uch nui•beor H) . In orer to

show the differ'enee between the velocity proftleu, th"e d'tance ýn
"milllmeter3 was plotted in the figure on thtw 1ttiv ntal =.ic. A;; can

be soen f'romn Fiure 13, the velocity profl les in 1, h' t.urhbln, 'Ire

change very little with the hout OCxhaIOV factol,, w1e101'i4 the 1rvMILOt-
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T.- ....• of the curve in the laminar sub-
layer increases with ar increasein heat exchange.

R 7"r-4 #

The same velocity pro-
files as well as profiles for

- ' Me = 5, represented in termis ofProf ile at the wall, the universal variables 0 and
n in Figure3 14 and 15, exhibit

41 •a considerable displacement2 0 " 9 6 to.£ .upward of thtv curves in the

Ditlance, turbulent core of the layer
when the heat exchange factor

Figlure 13 I.crea8ee .

PAS'

,4,
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Pig re 4 

Iur 151
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The velocity profile in the laminar sublayer for all values of

the heat exchange factor is well described by the equality 4-

.:.•wicver, the thickness of the sublayer, as seen in Figure 14 and Figure
15, increases with an increase of the heat exchange factor. The value

of the parameters % which determines the thickness of the laminar

sublayer and plays an important role in the turbulent boundary layer

theory, turns out to be equal to its corresponding value for incom-

pressible fluids (n, = 11.9 = a) only if there is no heat exchange

[see in Figure 15 the curve for Me = 5; (T - T )/T 0].
e 1 w e

_____Me -So~aO The results of the measurement

0 V0g=,7 of the laminar sublayer thickness

Sj and the velocity on its boundary are

ax given in Figure 16. Although the
•~ "4.. scatter of points is quite signift-

cant (partly this is due to the

difference in the Reynolds numbers),

-___ nevertheless it Is permissible to

draw the conclusion that, with an
increase in the heat exchange, the

Figure 16 relative velocities on the boundary

of the laminar sublayer and the sub-
.layer thicknec3 decrease. The same figure shows that, when the Me
inumber increases from 5 to 6.8, the thickness of the laminar sublayer
in the boundary layer increases approximately by a factor of 2.

Hillts experiments [261. The experiments were made with a conical
nozzle with the Me number at the exit equal to 9.1. At several sec-
tions of the nozzle, the Pitot tube and a thermocouple were used to
measure the velocity and temperature profiles in the boundary layer.

The conditions in the nozzle differed somewhat from the conditions of
flow on a flat plate, since the walls of the nozzle were tilted to its
axis at the anjle of 60, and there was a small negative longitudinal
pressure gradient.
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The magnitude of local friction was determined from the slope of

the velocity profiles near the wall by means of the formula' ,,r: 0("

The overall data on skin friction are listed in Table 6 (where c is
the coefficient of friction calculated in terms of the parameters of

the oncoming flow).

TABLE 6

8,99 7,68 12415 7,899 0,197
9,04 7,97 1607 8,910 0,235
9,07 8,28 1908 8,505 0 ,2 34
9,10 8,69 2287 8,000 0,227
8,22 7,17 2081 9,2i0 0,257
8,25 7,26 2/408 0,102 0,265
8,27 7 -M 2885 8,695 0,259
8,29 7,37 3202 8,202 0,247
8,29 1 7,41 34151 1 7,709 1. 023

In the last column of Table 6, the friction coefficient c f was
divided by the frict~ion coefficient c f calculated according to

Karman's formula (3.14~) for the values of the Reynolds numbers Re**
given in the Table.

When comparing the experimental data on friction with theoretical

calculations, one must keep in mind that, according to an estimate
given by Hill, the experimental values of the friction coefficient
may exceed by 20% the friction coefficient on a flat plate due to thle
effect of the negative pressure gradient.

The results of measurements of the velocity profiles in various
sections of the boundary layer in the nozzle are given in Figure 17,
where the universal coordinate 0 and n were plotted on the axes. As

oan be seen from the figure, in the laminar sublayer (lg n < 1.1), the
experimental points- are distributed near the curve *n (solid line.).

In the turbulent core, the experiment~al points are located practically

FTD-HC-23-723-71 9



I

S - - 1 along a straight line, which is

|I displaced upward from the dotted

i - line constructed according to Equa-

O :•tion ( 3 .4) for the velocity profile

i- •iA in an incompressible fluid (the

solid line in the turbulent core

I,: will be explained in Section 12).

- ;Among the given velocity profiles,
O s W 15'1P the profile for Me 8.99 differs

eV L_ ... considerably from the profiles for
-- other values of the Mach number.

The reason, as noted by Hill, is that

9L V the section in question was located

4' __in a region of an insufficiently

S-- developed turbulence. Among other

< i Lpeculiarities of the velocity pro-

0 ,'files, we should note the thickening

of the laminar sublayer. According

Figure 17 to Hill's data, the laminar sublayer

for Me = 9 occupies about 15% of the

thickness of the boundary layer.

The Sommer and Short experiments [27]. Free-flight determination

of friction was made measuring drag on hollow cylindrical models shot

through a supersonic wind tunnel. Here the numbers Meu 2.8 and 3.9

were obtained when shooting through stationary air, and the number

Me = 7.2 was achieved when shooting against an air stream moving at
the velocity Me = 2. The number Me a 5.6 was obtained using models
with a faired leading edge which lowered the Mach number from Me = 7
to 5.6 on the outer boundary of the boundary layer. The drag was cal-
culated from the deceleration of the models, which was in turn deter-
mined on the basis of chronograph readings and shadow photographs.

A turbulent boundary layer was produced using vortex generators

in the form of threaded cuts on the outer and inner surfaces of the
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model. To account for the thickening of the boundary layer and the

additional drag caused by the turbulence-producing threading, the so-

called "effective" Reynolds number was calculated (in Table 7, Reeff),

from which the friction coefficient for an incompressible fluid, cf0,

was determined. Without going into details of how Reeff was calculated,

we will only mention that this Reynolds number was constructed from

the length of the turbulent boundary layer necessary for the formation

of the momentum loss thickness which would be obtained if the additional

drag, caused by the vortex generator, were attributed only to the

friction in the boundary layer.

The results of the measurements of the friction coefficient are

given in Table 7. The values of the friction coefficients for incom-

pressible fluids were determined using Karman's formula (3.59).

TABLE 7(1)

2,81 1,03 62,3 3,0 0,00284 0,867

3,82 1,05 84,0 4,07 0,00287 0,730
5,63 1,29 72,0 4,71 0,00170 0,562
6,t0 5,00 82,0 4,00--6,0) 0,00125 0,401-0,451
7,00 1,75 123,5 0,06--9,02 0,00t15 0,3M5-0,446
3,78 1,05 84,0 4,92 0,00201 0,091
3,67 1,05 78,5 3,73 0,0240 0,721

(l)In this table, Re0 is the Reynolds number constructed from the

parameters of the oncoming flow and the length measured from the

beginning of the formation of the turbulent boundary layer.

Winkler's experiments [28]. An investigation was made of the

characteristics of the turbulent boundary layer on a cooled flat plate

for Me - 5.2 and three values of the temperature factor. Measurements

in the boundary layer were made using full-pressure nozzles (Pitot

tubes) and thermocouples. The friction stress on the walls T was

determined in parallel using two methods: from the slope of the
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,

velocity profile at the wall Tw= 1w (au/ay)w and from the measured

values of the thermal flux from the gas to the wall using the rela-

tionship, proposed by Kol'bern, between friction and heat transfer

Cf = 2chPr2 3  where ch is the heat loss coefficient (so-called

generalized Reynolds similitude).

The results of the friction measurements using the two methods

are given in Table 8 (here Te is the deceleration temperatures; cf is

the friction coefficient constructed from the parameters of the on-

coming flow; Re is the Reynolds number constructed from the parametersx
of the oncoming flow). As seen in the table, thr values obtained using

the two different methods coincide in a majority of cases to within

+ 4%. At the same time it should be noted that Winkler's data on the

TABLEJ 8

I, t o.T .. i. g A 0 UU

Sl10, t ., to IIr I, I loi, i 47-1 ' .73 J,' ULM1 0,135~ I, 13,.
.- 5,•.•,. o. ,,0 0 ,4110 4 .0T 31a ,.218 2,iG •.I J ,la .1 , vi

0 ,Q,01" 10 K 1", 5t 4M - - 4 " l 1A) 13,, tjo0 31,iw I1i 1,3 1,*) % I3,

0 "3, i
, . . . . i ,

effect of th~e temperature factor on friction ar'e in dl agr•ement wdttJ
he results or' th5 aLcOuLat0ons and ,thl experimental at&4 prvldd

. I ' by other authorso. Th~e res•ults ot the v~loolty proflht mteauuuements in
i "othe boundary layer 743, 5.2 and t e tre l 3,9 t teipe

0actor are i1'ven in otl Ve 18. An V!pprol1rnate cal ltVon oi th 1ae

laminar tublayer tpickneatue fing the dan a ofi tion e iure showag tamt whe
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10[ laminar sublayer occupiee about 9%

I of the thi-.kness of the entire

48 -- boundary layer.

:46 --- - L. V. Kozlov's experiment•s (29,
A technique involving a floatinZ

.. •455 S element was used to measure local
44 4 2455 friction on a flat plate Ir a super-

I /4-•t sonic flow with Intensive heat trans-

bi 1 fer between the flow and the wall.
St The moach number of the oncoming flow

inI the experiments was equal to 2.9.11 4 The Reynolds number varied within

the intervals 1.5 c Re xx 1 0 q 2.5.

Figure 18 On the basic of the analysis of

experimental data, the author

1r.;'omiends the foli•cing empirical formula for the friction ooetficient,

•;" ,•' a (3.151

where w

The author notes that the man squar deviation ot the experl-

mental points from the curve calculated using formula 3.15 was + SS

"within the experimental range of the ?•Wynolds number and the teqera-

two. factor.

Some go ntrsadn the realt "fMe*ei~tlhn

gfigs f heturbulent ýbouny~ars la ra uesncvelocities.Th
resultsd or the velocity profile meaaureuents rot, various values oa the

Htach number of the oncomdnt, riot and the te*ewrattre Ctctov- ,lctn In

the present section In Figures 8, 1-135, 1i, indliate that lh a ia*-

mnar sublayer the velocity profiles can be satisfactorily des•ribed by

the linear relationship * .
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Figure 19 PiCWm'2 0

In the tuttalert core, the velocity profile is lor~arittmie
(Fi~upes 9, l7), In the case or a ther*4a1W &nsulattd aurface, the

Promfo olope (Figure 9) turns out to be the same as for ani incmrmpres-
cibte M%14. In the preseuiae ot heat tranafer (Figure 1?), the slope
of' the volocilty profile in thit rogion torns out to be fa'estor thtn
for &fn inowesbeftlud (one nu-fl, however, koop lo maind tnat 1h
Mii114 #xVrta ftc4 In * 1umIT the t~rdtroase In the sAlope, ot the pro-
Cio~ m;t be tsplinmed p,4 tti al1ly 4*- being du# to the ettoaet of the

nec~tIV@ CNlQ rAdient). An increase to the lintemsIt-y of heat
transfrer betnenf a fps aind thtwl ed stnb eni iue
l AMd "15 to a elisngc in tht slope Ofr tiw Velocity P1-or!e 10tho

dertomtatlot Olt the OPf~r1ie ait the Jucinof' the l4AInttr uublatwr
44the turbulent tort yb e-lane bos n t eln w mu d by tut patt-

sure -ntietticoth eif4U ft* were na&& on the -turrace for a

A 00ol~arIMh of .,thewvlotity prft-ies fNr lalxPach huf~tot

(flue17)and, fror to lno4Csi~ luid WPisuz Zg, idota tittnmity
the oxperiannszl datuia @,ts¶8w4 by Wlkw'adse# UP)) 4hoWs th.ar for larev

#ac4hnuo aten tOw transitioa~l (buttert) ton.- tbtween the, 4auoiior

flO-U 3-Ž 3'TŽ 3Il



sublayer and the turbulent core is considerably reduced. If for an

incompressible fluid, the buffer zone begins at n a 5 and ends at

n a 30 - 50, then for large Mach numbers (for example, Hill's experi-

ments) the buffer zone almost completely disintegrates and the trans-

ition from the laminar sublayer to the turbulent core is a sharp one.

This Justifies the use of the double layer Prandtl acheme in the

theory of the turbulent boundary layer for large supersonic velo.;ities.

Another important feature of the velocity profiles in supersonic

flows is the increase in thickness of the laminar sublayer with an

increase in the Mach number. The change of the relative thickness of

the laminar sublayer with an increase in the Mach number for various

Reynolds numbers may be Judged using Figure 20 (this figure contains

the experimental data obtained by Hill, Lobb, Winkler, and Persoh, as

well as by Ye. U. Repik). As can be seen from the figure, for an

Incompressible fluid, the thickness of the laminar sublayer does not

exceed 3$ of the thickness of tne entire layer 6. For M 9 6g, it
may occupy 30% and more of the total layer thickness, where the rate
of increase of the relative thickness of the laminar sublayer increases
with increase in tne Mach number. A decrease In the Reynolds number
-R&*e al&o leads to an increase in 6 z/6.

a ------ igure 21 shows the data

#oOlhaUJ obtained by Lobb et al., Hill,
* ; Lobb, Vtikia,. Monaghan [31) on the universal coor-

Sdinate n on the boundary of the
M r)itZ! ~ laminar ,'ublayer, denoted by o

- , -" As can be seen in Pigure 21, the

a.experimental evidence available today
- is InuffIctient to provide a numer-

ical estimate of the effect of a
certain Caotlor on the value of this
paulrameter.

PIgure 21
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This fact explains why, in a majority of the existing theories

of the turbulent boundary layer in a compressible gas, the value of

ni is set equal to its value in an incompressible fluid, i.e.,

n' 10. a - 12.5(6)

V*512. Semiempirical Method of Calculation of Friction

on a Flat Plate [32]

Let us consider flow over a smooth impermeable plate of a super-
sonic gas stream (Figure 22). If the plate is oriented at zero angle

of attack (Figure 22, a), then the velocity on the outer boundary of

the boundary layer will be constant and equal to the velocity of the

oncoming flow at infinity: U0  U (7). When the flow is over a plate

at the antle of attack (or i wedge) with an anseciatod dlucontin•ity

on the lower surface and a ran of rarefaction waves on the upper uar-

race (Figutre 22, b), the velocity on the outer boundary of tne boundary

layer will also be constant and equal to the velocity behind the dis-

contivuity or the fan or rarefaction, respectively. The magnitut.e of
the velocity behind the asaociated oblique ahook wave and thoe ra of-

the rarefaction waves can be determined using woll kntowni gal&yna•i

relationo [331.

In the caov under considtratton lnvolvtn?: A plfae flv w1th
Sonstant velocity ('" a eonst, dU*/dx a 0) Over a nonpv .l tle wail

- 0) ,it heitegrAl MOMWrUM eAtioa (2.$a) will betOW

Footnot~o ()Appoart 0 Phon 1

PTO-1tC-23-723-7l



db**

(O3 ")

Here 6'* is the momentum loss thickness given by Equation (2.76).

The parameters referred to the outer boundary of the boundary layer

will, as before, be dienoted with a subscript e, keeping in mind that

only izt the particular case involving flow over a flat plate at the

zero angle of attack are these parameters equal to the parameters of

the oncoming flow at infinity.

Introducing the Reynolds numbers, constructed using the momentum

loa.s thickness

N• (3.17)

and the running coordinate of a point on the plate

we shall write Equation (3.16) in the form

where c Is thUe farictl'n jooraaetar Iriven by q.uation (3,A0.•). Reuiting
Equ8tion (3.19) in Integal torm we obtain

S . (3-020)

As Implked by gq~tion (~.),in ardetr to aalv# tho poblom thua
faml l" mt one must Mi 4 r. "la1 ohip between C .4 R04, I.e.1
ont at ost~biish a Oas lav% To establish this lav1 we turn to
the e~t'erasslft tor the MMOMt~UM 1003 thlok-nas (Z7) wrtkt~n it in
W!00 Of th* UaniVerSA1 d601#t #3nae * %fid tit intir4dUeod bY Nugtilns

(38,in tht trom

* 0-4

too g



In view of Equations (3.17) and (3.8), we put (3.21) in the form

et  ON • --5± --a),d•ft (3.22)

We use the two-layer model of the turbulent boundary layer:

laminar-turbulent core (for a justification of this model for super-
sonic flows see Section 11).

To determine the function (u) in the turbulent core, we shall

make use of Formula (2.69) in Karman's semiempirical theory. As far
as the turbulence constant K in this formula is concerned, we shall

assume that it does not depend on compressibility (on the Me number)

or on heat transfer (on the temperature factor Tw/Te), and has the
same numerical value as for an incompressible fluid, i.e., K = 0.4.

Passing to the universal coordinates (3.8) in Karman's Formula (2.69),
we bring it to the form

p

- - (3.23)

where the prime denotes a derivative with respect to n.

Taking the root of both sides of the question thus obtained, we

have

(3.24)

where

" ' (3.25)

The minus sign on the right-hand side of Equation (3.24) was chosen

since on the plate 4" < 0 (the condition of the convexity of the

velocity profile).
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IV
Interchanging in (3.24) the argument and the function, we obtain

the equation

* dq (3.26)

whose first integral is

d4L= CiexpQ4(XtITda). (3.27)

To determine the constant of integration C1 the value of the deriva-

tive do/dr at the boundary of the laminar sublayer on the side of the

turbulent core must be given. The simplest assumption here is a

requirement that -"/dn have the same value as for an incompressible

fluid, i.e.,

li A'(0i)!.1  = 1 . --

In other words, it is assumed that q'(ti+ O) does not depend on the

compressibility and heat transfer (a is an empirical constant for the

laminar sublayer, n. is a coordinate specifying the boundary of the

laminar sublayer). This assumption leads to the following result:

dip (T f). (3.28)

Here it utIU, is the dimensionless velocity at the boundary of the

laminar sublayer (a definition of this quantity will be given later).

Upon performing integration in (3.28) and determining the

constant of integration from the condition at the boundary of the

laminar sublayer (u = u at n = n we obtain an expression for the

velocity profile in the turbulent core

11 11 +pX. a. 4
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Here T is given by Equation (3.25). In the laminar sublayer we assume

a linear relation for the velocity profile

= '1.(3.30)

from which follows an expression for the velocity at the boundary

of the laminar sublayer(8)

iJt ViaT T (3.31)

Thus, the derivative (u)which is necessary to determine the

Reynolds number Re** (3.22) is given for the turbulent core by

Equation (3.22), and for the laminar sublayer, according to (3.30),

by the equality

d'q (3.32)

Turning now to the expression, for Re** (3.22), we note that,

when evaluating the integral on the right-hand side of the equation,
the integration interval must, strictly speaking, be divided into
two segments: laminar sublayer (0 < il < ) and turbulent core

S(u u < 1). A proper value of dn/d¢ should be substituted in each
of these segments, using the Expression (3.32) in the rirst segment,

and (3.28) in the second. However, such calculations result in a
fairly complicated expression for Re** and are not necessary in those
cases when the relative thickness of the laminar sublayer is not very
large [(6 /6) < 0.10 - 0.15). In this case, one may omit the Virst
segment and continue the second all the way to the wall. Calculations

* show that, for large values of the friction parameter 4, the error
involved in such an approximation. is inbignificant. Following this
reasoning, we shall substitute the expression for dn/dc (3.28) in
(3.22). As a result we obtain the following expression for the Reynolds

* I number Re**:

Footnote (8) appea2s on page 173.
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•,TU. (3-33)

Here we introduce the notation(9)

) - L ( 3 -3 4)

For later use it is convenient to write (3.33) in the form
t

Re*= •.-p [- 4• 1 1g) - )• x x (4)) da, ( 3.35 )

](a). XF (4).- d4 •T d4,o I F•-7• (3.36a)

0

(40 -P6(3.36b)

Regarding the friction stress T in the boundary layer, we shall

make the assumption (3.1) (a Justificafion of this assumption was

given in Section 10). In this case, we have

When determining I (s), we shall approximately set the density in

the laminar sublayer equal to a constant - namely, its value at the

wall pw' In this case, in view of (3.31), we find

(3.38)

In order to evaluate the integral in the Zxpression (3.35), we

use the fact that C is much greater than unity (c >• 1). In this

case, the integral may be represonted by an asymptotic series obtained

as a result of integration by parts:

Footnote (9) appears on page 179.
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exp~~I~i) (~ F, F F~•1()ei -x 1; (4• dd'•'• x, + " (3.390)

Here

t' T +- ( )'j'" + 311[' lj" 3,vt, q • I

SF=D (D"-. , + I-

A/ + rj5_(1), o'q ' +IODW'V + J (3.40)

(I" "V +' 1 D'T 15D I (3 40

I+
Here primes denote derivatives with respect to u.

We determine the values of the functions 4 (u) and T (u) and

their derivatives for a = 1:
(1)(1) 0, ; 0'( )-- --. _, •

Pw'

(1), 0 2 (2- 2 (-LI-)P PW

It is not necessary to calculate the values of the functions 4 and

T and their derivatives at 0 0, since it is obvious beforehand
that the contribution of the series (3.39) for i = 0 to the value of

the integral is immeasurably smaller than the contribution of the

same series for 1 1, due to the presence in the latter of a large

exponential factor. In view of Equations (3.37), (3.38), (3.40) and
(3.41), we shall evaluate the definite integral occurring on the

"right-hand side of (3.35) with the aid of (3.39). Retaining only the

terms up to K3• in the denominator, we obtain the following

expression for Re**:

RO** O�•-IL- OXp.• L"di

S(3.42)
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Now let us consider the Reynolds number constructed with the

displacement thickness 6* (2.77):

Re* U•pe*
I-e (3.43)

Following the same reasoning as in determining Re**, we find

Ret*- exp.[ ( )'da] I+()" -
PX'le 0 W L P.e PW

I P.\-ifIP''+ ( Ppw e (P_\?(.~ (3.44)
PwJ L 2 Po PwP 2e \Pw)e \ Pto,

Forming the ratio Re*/Re**, we obtain an expression for the

form parameter H* -- 16**:

,o [2., . v (PW . (P) l--z(-'~ ~ ~ P +"'" '•{-r• -"[,-÷ Lw°'c (-LIj
PR- PW 

1 P' 2' p,\pw (3.45

The Expression (3.42) that relates the Reynolds number Re**

(3.17) with the friction parameter ý (3.8) is essentially a "drag law".

It is important to emphasize that this law was obtained without any

assumptions about the density variation in the boundary layer, and

can be used to solve problems of flow over impermeable surfaces for

an arbitrary variation of density in the boundary layer.

Now we proceed to establish the relationship between density

and velocity, which will be necessary below. We note that from the

equation of state (1.86) and the condition that pressure be constant

across the boundary layer, we can deduce the following simple relation

between the density and temperature

' 1 ' (3.46)

In the simplest form, the relationship between the temperature and

velocity in the boundary layer can be obtained by assuming that the

Prandtl number Pr and its turbulent analog PrT are equal to unity,
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and the specific heat capacity of the gas is constant. In this case,
we obtain a particular integral of the energy equation, called

the Crocco integral:

T-. (3.47)

Here

?~ T e~a,(3.148)

T T,- '1 ,+,

(T* is the deceleration temperature).
e

Sometimes, in order to account for a deviation of the Prandtl

numbers (Pr and PrT) from unity, one artificially introduces the
(10)recovery factor r in the expression for w and 8 (3.48). In this

case we have
:T,

Tr Te(i + rTM2) (3.149)

(Tr is the recovery temperature).

A basis for this modification of the Crocco integral is provided

by a simple reasoning according to which, in the absence of heat of

transfer between the gas and the wall, the coefficient w must vanish

regardless of the values of the Prandtl numbers (Pr, PrT). When the
Prandtl numbers deviate from unity, the condition in question will be
satisfied only if, in the expression for w (3.48), T* will signify

e
the equilibrium temperature of the thermally insulated wall, Tr. As

a result, in the expression for 8 (3.48) to satisfy the conditions on

the outer boundary (T = T for 1 * 1) one must introduce the recoverye
factor r, which brings 8 to its form in (3.49).

Footnote (10) appears on page 179.
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Using Equations (3.47) and (3.46), we find the desired relation-

ship between the density and the velocity in the boundary layer:

.. (3 50)

Substituting Equation (3.50) in (3.37), and performing the

resultant integration, we find an expression for the function I (•)
which will be important lct.er:

aresin--- earsin 2 .1 (351
Y+I- I+-r; (3.51)

Furthermore noting that the function I (u) enters the exponents
in Equations (3.42) and (3.44), and performing the indicated calcula-

tions on the right-hand sides of these equations and taking account

of (3.50), we find the following expressions for Re** and Re*:

Re** _ • ^L~exp'n~I(1)1[ 2 -1,5ca--j3[1

•: ~Ra'* ::"7 t exp~ xlg l ( )] 1 >;

/X2 lit (3.52)

-' ,~ I-(3.53)

Here

70 (3.54

Forming the ratio of Equations (3.53) and (3.52), we find an
expression for the form parameter H* a 6*/6'*:

ii* Kj ,- . (3'55)
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In the limiting case of an incompressible gas (• = 0) and in

the absence of heat transfer (w = 0), we obtain an expression

u: 3. *• * (3.56)

* which for the Reynolds numbers 105 - 107 gives the value H + 1.36 -

- 1.23, which is in good agreement with experiment.

iHaving obtained the drag law (3.52) that establishes a relation

between the Reynolds numbers Re** (3.17), constructed from the momen-

tum loss thickness, and the friction parameter 4 (3.8), it is not
difficult, using the momentum equation in the form (3.20), to
establish the required relationship between the friction coefficient

c and the Reynolds number Rex (3.18), constructed from the running
coordinate of a point on the plate. In establishing this relation3hlp,
it is convenient to use a rough approximation for Re** in which one
neglects the second term on the right-hand side of Equation (3.54) as
compared with unity. This approximation will simplify considerably
the final formula for the friction coeffitient e How0ver' Vhe error
introduced in the formula for of can be to a conaiderable extont
compensated by a suitable choice of the constant of integration(.

3ubstituting the expression fox, Re**, with the approximation described
tbove, in Equatiun (3.20) and performing the integration with the
boundary condition ReX - 0 at 4 " 0 (the condition that the tubulent
boundary layer will begin at the leading edge of the plate), we
obtain approximately

ltj t~pX*I(Il Rt

The eonatant C h.u been Introduoed in (3.57) to "Oownzat"" fN' the

approximation used for Re##.

Passing ini Formtla (3.t7) from t. to ol aocin6 to (3.•), usa:i
Equation (3.50), and tai~in, the logairittm, we obtain

Footnote (i1) apjpoats on Paoe VP'.
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x(Ig e) 0- - PIV) 2 lglleo, l)-

+ (3.58)

where I (1) is given by Equation (3.54), and

• ~CS - - lg .

Setting in (3.58) K = 0.4 and determining the constant C2 from
the condition that for w - B - 0, Formula (3.58) turn into Karman's
formula for an incompressible fluid

0.41 + Igt 04Cl, . (3.59)

lWe obtain the following expression for the local skin friction
* coefficient for a flat plate in a compressible gas:

~0"4 +t 4(R% cl) - 19 (6L (3,60) (3.60)

To o~lculate the dynamic viscosity or the gas, one can use
either the Sutherland Portmula (1.75), or the pover law

uhr Vtw exponen n is usually taken equal to 0.76.

N~ow we poceed to detoftifie the moan eftoritoit or skinx tidtioix

Por thb purpose, we use the Intog•gt *e40tuim relation in the fom

(3.19), irsrt traftsr~ting it tu the roi1m
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Passing on the left-hand side of Equation (3.63) from c to cf with
the help uf Equation (3.8) and performing, the resultant Integration
inder' the condition Re** 0 for ReX = 0 in view of Equation (3.62),

Wt' obtain

j .:.(3.64)

f 0uu•titu=,tn in the right-hend side oCl Formula (3.64), the approximate

cxpre~ion o'or Re*' (3.52), we have

ep R , 4412 l,(365

Tho ýoastant QC3 hois Lkoon ±ntroduc..d boro, Juc:t as in rclzfllcon

"0..' )xstnnQteli for thek jpp~oXiwatt, fxnss~ tr R

Coa'I n- Squation (3.&$) with Equation 13.47), pŽut Intmv uw lw

;it-44t-t flrr:041tt to (-;to that, (Nw thea Urgv, valute, oIN ktlvj~tt
Ivo t w IIa* r -Oi14etped here, the c0oetfilenws or~ 111d 0 ror

~i ctsttr¶ ~tne~~uet~,4ne nalr aonwludo thmt kinc
* 1 r r uIeVV ýratv- rrligst1 t fucnn baa the t'Orm 0-60), 4i1thn-lg b tdth

lo-I I - I

iti~oft .tl, ohiottit ,P Obtlth,. the rDkw.c .,
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SO 'I2 t-w-'-- ( arc(iRe - arcsin 3.

,=Ig(Roc,)-1(•). (3.) ) (3.68)

Let us consider two practically important particular cases of

a flow over a flat plate.

Thermally insulated plate. In this case, Tw Tr, =0

• • ;'= -- i" • for• Pr -'-Pr, -=1,

i + M-", (3.69a)

for Pr +.Pr1 .+ (3.69b)

Formulas (3.60) for the local friction coefficient and (3.68)
will become, respectively,

41.: 4 1 -4Iarmitil .- 0, 4t+ tig (Roecl) -- I(

* and

- Plate with heat transfer in a stream of an incompressible fluid.
In this case, setting B to 0. we obtain

•!i~ ~ t . .... -• ......... t.i+ti!ai l (3,72)

to oter) lot(3-73)

"The reln.onships between the frlition ooefficients and the

p.rameterms of the oncoming flow and the conditions at the wall, ob-

tained in ao Implicit form, are not always convenient In practice.

It is not hard to ahow bv means or simple rearrangements that these

-relat.lon-ehpa can be waie explicit. Por this purpose, we turn to

PTI)iC-23-723-.7 112

:+•, ,., + " , : ..... :+ .. •:; . ... . . . • , .. .. ,. . . ,



Equation (3.57), which in the case of an incompressible fluid and the

absence of' heat transfer between the gas and the wall becomes

'.#•-•eC. • Re.. (3.74)

Dividing both sides of Equation (3.57), respectively, by both sides

of Equation (3.74), we have

(.- --- 4; (3-75)

Passing in the Expression (3.75) from c to ca with the help of (3.8),

and taking the logarithm, we obtain

-~ E , F(3.76)

where

Fa. (3.77)

G 1; (3.T8)

"+ MA

d'0to 'Joterml.e the friction cooftriotiet U Ond Can USe '0tthor tho

Wr-man ?ormtula (3.59) or zhe imtp.er oexpliit relationa

S . i;%aton (3.76) can De rOduced to a trnendental tlAtiot

with one p•tatetor. For thid purpoto, we ivite %thi equation in

•ootn,.Ae (12) a~poarn on • 11%.

I ..
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and then add 2 ig P-- to both sides of the equation thus obtained,
obtaining

F: FS F F +-F

Ig(_j ;'1 ig47+L- .(.1

Introducing the notation

It,, (3.82)

lg +- (3.33)

we shall have instead of Equation (3.81) the following equation:

W+N Q. (3.84)

Thus) this expression for the friction coefficient can be
written in the Form

where and K are determied from Equations (3477) and (3.79), and N

can be found solving Equation (3,84). Determination of N is not diffl-

cult, and can be easily done u4inc tables of decimal logarithma or

graphically.

If for the. dyna•it vlscosi~t we u-e the power law (3.61), then
the expression for the function 0, whiih together with P and K deter•
mines U, bec-4ma

• (3.86)

It 1i Interocting to noto that, when PrA•tlds Povtula (2.68) .
it used Instead or Katman's Pormula (2.69), the e*preslon trui the

frictlon 0eQCfWcient thus obtained it tho same t the Expression (3.15),

I .......... . . . . .



with the only difterence that the function G is not given by (3.86)1

but instead by

S '- r(3.87)

Corsidering Formula (3.85), it may be noted that for large

Reynolds numbers, the ratio cf/Cfo depends slightly on the Reynolds

number. in fact, by letting the Reynolds number approach infinity

Utex -* C) or, which is the same thing, F ÷ •, we obtain the following

limiting formula for tb- ratio cf/cfo

Ci

Z1 (3.88)

K, given by Equý ion (3.79), depends only on the compressibility of

the medium (8) and the heat transfer (w), and does not depend on the

Reynolds number.

The existence of the limiting Formula (3.88) was established,

and then widely used to construct semiempirical methods of turbulent

noundary layer calculations by S. S. Kutateladze, A. I. Leont'yev,

and others [34].

When Formula (3.85) is used for computing the friction coeffi-

cient, it is useful, just as before, to consider certain particular

cases.

In the case of a thermally insulated plate (w 0), the coeffi-

cient ý is given by Equations (3. 6 9a) and (3.69b), and the determining

function K has the form

(3.89)

Fotr an incompressible fluid in the presence of heat transfer,

by letting 8 go to zero, we obtain

-- 7.. • (i ) +.w., -.- i) . ( 3.90 )
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In order to calculate the mean friction coefficient for a flat

plate, one can easily establish the validity of a formula or the same

form as Formula (3.85), namely

€•o N ,-N' (3.91)

where K and N are given by the same equations as before, namely (3.79)

and (3.8h), and F has the form

(1= ,242

iF F,-" (3.92)

To determine the friction coefficient CFo, one can use either Karman's

Formula (3.67), op the simpler power-law relation

CFO 0,0307 Rex,,1 . (3.93)

Y Formulas (3.85) and (3.91) obtained above permit us to calculate

the ratios of the local and mean friction coefficient if we are given

the values of the Mach number Me, the temperature factor Tw/Tr, and

the Reynolds number Rex, to the local and mean friction coefficients

for an incompressible fluid (Me = 0, Tw/Tr = 1) for the same value of

the Reynolds number Rex. However, in certain cases, particularly

when analyzing experimental data, it may be more convenient to use

the Reynolds numbe. constructed from the momentum loss thickness, Re**,

as the characteristic Reynolds number. This is expedient, for example,

in those cases when it is difficult to determine the initial point of

the boundary layer on the wall of a tunnel, and consequently, it is

impossible to use the Reynolds number constructed from the running

coordinate, Re x In those cases, in order to compare theory with

experiment, it is useful to have the ratios cf/cf 0 and cF/0F0 in

which cf and cf0, cF and cF0 have been calculated for the same values

of the Reynolds number Re**.

To obtain these ratios, we turn to the expression for the

Reynolds number Re**, (3.53), which, for an incompressible fluid,

bbenomes
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Similarly, as was done when deriving Equations (3.85) and (3.91), we

shall use a rough approximation for che Reynolds number Re** in which

we neglect on the right-hand sides of Equations (3.52) and (3.94)

terms containing /ý (1/%0), as they are negligible compared to

unity. Then dividing as before, both sides of Equation (3.52) by both

sides of Equation (3.94), respectively, and passing from t to of

according to (3.8), we obtain after simple rearrangements

" F "(3.95)

where the functions F, K, and G are as before given by Equations

(3.77) - (3.79).

The expression for (cF/cF0)e** has the same form as in (3.95),
except that the function F is in this case given by Equation (3.92).

Letting in Equation (3.95) the Reynolds number Re** go to

infinity, we arrive at the limiting Formula (3.88) obtained above.

Niow we proceed to determine the velocity profile in a boundary

layer. In the laminar sublayer, the velocity profile is described

by a linear relation (3.30). To find the velocity profile In the
turbulent core of the boundary layer, we turn to Equation (3.29),

first writing the latter in the form

0 XI IV lt(i (3.96)
_0 0

Here 4 is given by Equation (3.25).
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Making the assumption (3.1) for the friction stress as before,

and assuming that the density in the laminar sublayer (for 0 <_ U < •)

is constant and equal to its value at the wall, we obtain from the

preceding equation

-- - (3.97)
( 0

Here I (u) is given by Equation (3.51).

Substituting In the Expression (3.97) the value of I (u) from

Equation (3.51) and performing integration, we obtain the following

expression for the velocity profile in the turbulent core:

eK:( VI-WU± Xu~

|X
I+ P/

2 (5

X'exp,7rcsin" arcsin -,. (3.98)

Upon a substitution in (3.98) of the corresponding values of the
empirical constants (at = 11.5, K = 0.4~, f = l/Kct = 0.218) and taking

the logarithm, we express the velocity profile in the following form:

/ ~ 2~t -&resin ~.+

+ g[,75 ,5 Ig q + 5,5. (3.99)

For the limiting case of an incompressible fluid (0 0) and in

the absence of heat transfer (w 0), Equation (3.99) turns into the
* well-known logarithmic velocity profile

Y ~5,75gIR q+ 5 5 . (3.100)

When the Expression (3.52) for the Reynolds number Re** is used,
the velocity profile (3.98) can be easily transformed to the following

FTD-lHC-23-723-7118
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form, which is useful in certain practical applications:

~~~ 1'+ f2

rcsin - arcsin + +5,75 x+ 5,75/ _._V

2,513a i,25-\
xlg

= 5,75 g(,). (3.101)

The semiempirical method of calculating friction in the turbulent

boundary layer on a flat plate, as presented in the present section,

is illustrated by the plots given in Figures 23 - 26. For comparison,

the experimental data obtained by various workers are also given

therein.

Figure 23 gives the results of calculating the local friction

coefficient for a thermally insulated plate for three Reynolds numbers:

106, 10, 108. The subscript - means that a curve in question has

been plotted according to the limiting Formula (3.88). In addition

to the experimental points obtained by the authors whose papers were

discussed in Section 11, Figure 23 also contains points obtained by

Lipmann and Dhavan [35].

Figure 24 gives the results of calculating the mean friction
coefficient on a thermally insulated surface. In addition to the
experimental data taken from the papers discussed earlier, the results

obtained by Pappas [36] are also used here. It should be noted that

here, Just as in Figure 23, the data points obtained by Coles lie

above the theoretical curves.

Figuie 25 gives the results of calculating the local friction
. coefficient for a plate that can exchange heat with gas (thermal flux

is directed from the gas to the wall).

Figure 26 gives the results of calculating the ratio of the
local friction coefficient in a compressible eas to the friction

PTD-kIW-23-723-71
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82 coefficient in an incompressible

%=2,27; =2,1" f fluid,, where both coefficients
d|, ,,•. , .•were computed for the same Reynolds

0 0 0 ,number constructed from the momen-

2/ tum loss thickness [Formula (3.95)].

HeI 9Y; '=199 Figure 26, along with the data
L I poinus taken from Hill's paper

S6' • • discussed in Section 11, also con-

tains data points for Me = 10

Figure 27 from a later paper of the same

author.

Figure 27 is a comparison of the form parameter H*, calculated

using Equation (3.55), with the values of this form parameter obtained

from Pappas' experiments [37]. As can be seen from the graph, the

theoretical and experimental data are in better agree.aent for larger

Reynolds numbers.

Figure 17 also includes the theoretical profiles along with the

experimental velocity profiles, obtained experimentally by Hill.

Solid lines indicate the velocity profiles calculated using Formulas

(3.30) (laminar sublayer) and (3.99) (turbulent core). Dotted lines

indicate the logarithmic velocity profile obtained for an incompres-
sible fluid using Formula (3.100). A comparison of the solid lines

with the experimental points shows that Formula (3.99) gives a good
qualitative account of the effects of compressibility and temperature

on the form of the velocity profile. One should not expect full

agreement between the theoretical and experimental velocity profiles,

if one recalls that certain simplifying assumptions [in particular,

assumption (3.1) about a constant stress friction across the boundary

layer] were made in developing the computational technique delineated

above.
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§ 13. The Effect of Compressibility and Heat

Transfer on the Laminar Sublayer

The problem of determining the thickness of the laminar sublayer

N and the velocity at its boundary is of great importance in turbulent

boundary layer theory, since the "laws" of drag and heat transfer

greatly depend on the choice of these parameters. It will be recalled

that in the theory of the turbulent boundary layer for an incompressible

fluid the thickness of the laminar sublayer is determined from simple

* dimensional considerations. In fact, if it is assumed that the flow

in the laminar sublayer is determined by the friction stress at the
wall Tw, viscosity p, and the density of the medium, p, then dimen-

sional considerations imply [38] that

V

1.= /P P= -,(3.102)

where a is a dimensionless empirical constant.

The value of the constant a cannot be calculated theoretically

and must be determined from experiments. Measurements done by

Nikuradze which involved the flow of water in long cylindrical tubes

have shown that the value of a is close to 11.5. The subsequent

measurements done by other authors resulted in values of a ranging

from 10 to 13.5.

The assumption that the friction stress (,r const T w) yields a

linear distribution of the velocities in the laminar sublayer and

the Newton formula (3.105) for friction lead to a linear velocity

distribution in a laminar sublayer:

L!

"IL-'•-. (3.103)

In terms of the universal coordinates, the equality becomes

(3.30)
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and at the boundary of the sublayer according to (3.102)(13)

• " :,..(3-104)

When considering the flow in the turbulent boundary layer of a

compressible gas, one can obviously obtain a formula similar to

Formula (3.102) by starting with the same dimensional considerations.

k However, due to the variation of V and p across the sublayer, it is

unclear how one should choose the values of viscosity and density in

this formula. It is also not clear whether the empirical constant a

depends on the Mach number and the temperature factor. Usually, in

ýf Formula (3.102), p and p are either taken at a certain "defining"

temperature or are obtained by averaging over the sublayer. In parti-
cular, in Wilson's and Van Driest's papers, which were quoted above,
the defining temperature was that of the wall.

(114)
In L. Ye. Kalikhman's paper the following averaging law was

used for viscosity

,•_ ,

and for the density and velocity

One can also give examples of other mtehods of' avtraginr.,
however, today there is no necessity of using ultem. It 1 port..

clear that, at the present time, it is not potsuib.e to rive a derl;ift
answer to the question of the "definlng" temper.ure or the law of
averaging. This circumstance, as nuted above, ha.4 leI to a
number of ways of determining the thicknesa of thie laminar "

Footnotes (13) and (14) appear on page 171.



As always in such cases, the criterion that should be used when

selecting the "defining" temperature or the law of averaging is a

comparison with experiment. However, the lack of sufficient experi-

mental evidence does not permit us to make this comparison today.

Until enough experimental data are accumulated, preference in selecting

a hypothesis about the "defining" temperature (method of averaging)

should apparently be given to a hypothesis that leads to the simplest

results.

The flow in the laminar sublayer in a compressible gas can be

most simply described when the temperature of the wall is used as the

"defining" temperature. In this case, the velocity profile is de-

scribed by the same linear relation (3.30) as in the case of an incom-
pressible fluid. The experimental data on velocity profiles given in

Section 11 indicate that this relation is also well-satisfied at

supersonic gas velocities.

The above methods of accounting for the effects of compressibility

and heat transfer on the parameters of the laminar sublayer by select-

ing a "defining" temperature or by averaging over the sublayer do not

facilitate a detailed analysis. A much Creater amount of Information

on velocity profiles in the laminar sublayer can be obtained If one

takes into account the actual variation of the gas viscosity with the

temperature across the sublayer. This has been done by Czarnecki and

teonta 3[9]. Following this paper, we shall rewrite Newton's foramula

for the friction stress

SS• (3.10OS)

In the form

where * and q ar" the univetsa coorditnates defined in squatlonS (3.8).
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Making the assumption (3.1) that the friction stress iu constant

irn the sublayer and that the dependence of viscosity on temperature

can be expressed in the form of a power law (3.61), and using the

Crocco integral (3.47) relating the temperature to velocity, one can

obtain the following expression for the velocity profile in the

laminar sublayer from Formula (3.106):

where w, 6 and C are given by Equations (3.49) and (3.8).

The results of calculations based on Formula (3.107) for the

Mach number N 9o the numbers Re1 *L VOE 1') 10 . and two values'

of' the temperature factor T /?T 15.1 (thermally Insulated surfaco)

and TwJTO 2 .6 (strongly cooled surface) are given In FiGure 23.

IT_



* - n. As a result, the value of the coordinate n1 characterizing
the boundary of the laminar sublayer, is close to its value in an in-

compressible fluid (na I 10 - 11). When the plate is strongly cooled

(Tw/Te = 2.6), the velocity profiles become flatter and are noticeably
displaced relative to the profile * = n. The values of the coordinate

n increase considerably in this case

Similar results were obtained

by L. M. Zysina-Molozhen and% , • ,. N. Soskova(1) They assumed

a linear dependence of viscosity

on temperature (n -i ). The
at ,IJvelocity profile In this case has

.xoflot the torn

-TT(3.108)

Figure 29 where w and B are given by
Equations (3.48). Using the pro-

Mtle (3.108) for the laminar sub-

layer, ant.d Vun brleat's velocity pror±1e(17 ) for theý turbulont uore,

the authors of the p•pr detwrnine4 the value oa the coordinate n,
for varlou* values or the Kuach nuxbo~ and tho tcaperaturc factor by

&c~blning thtse pratlIOU (flg'uro Z9). flovr 2r r'~otuth exprimental

data obtained by Lobbi, Vlhkler and Nnwh tor t -o ; I and 3 repre-

Soint the #xp rlmvntk1 data obtair.d, by L. M.Zyn-#ohead

1, t. ,.0'lkova lot 1i4, * 1.4$ nrA X,6 *a 0., reapectively. As tan b*
saeti it Pflgur 29, tith strong tooling the value or the paro•itoer tit

incrnc'et eubotahtitilyi 6 ) . A aiilar tn'dency vaS noted in the

ptper b t+bi Vlo, nlet, 4ad Cach (PFutn" '2)0 thereat in 8111'a

ekptrtLtntt, as can 4J@ ,een in tothe sa PIsure f1, this pheu noti
vat not abserved. .M4 above discussion i*%ip ie tthat on ther•ally

insuxatt4 tuffracc i.n the pretenee ot heat tr•arter trofm the aurface
Ot the body to tht gas the value to the aodrdiinagt q Is Close to Its

Footnote+ (kS), (16), (17) and (1S) appear on par..e I79 150.
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value in an incompressible fluid. A final judgment as to the effect

of compressibility and heat transfer on the parameter ni c- apparently

be made only if a sufficiently great amount of experimental data is

accumulated. Until the problem is solved experimentally, one should

apparently use for n, a those values of the parameter that were

obtained In experiments with an incompressible fluid, i.e., a 11.5.

5 14. Empirical Method of Calculating Friction

on a Flat Plate( 1 9 )

The method is based on the assumption that we have the following

functional ralationship:

::+¢cF= (e (3.109)

where the function *** depends only on the Reynolds number Re*#. con-

s.rueted rrom the momentum losu thlokness, and the runations F and

SFRe* depend only on the Mach number Ie and the temperature ractor

STITe. The NnotIon PC and Pe,** are such that

Thf. rtaoning thut ledatO EOAtiOft (.1.09) c#040 ObVIOU4 It thO

whoeato vlti atatrS(31 u the S 0. In (3.l)

we nott thatm In cbntt'ast wit-h (3.95). thie rlgtýt-halad dides ot

* Pootaote (19) appats on Vato 100O.

.............. ...



Equation (3.111) does not depend on the Reynolds number Re**, which

holds for sufficiently large Reynolds numbers (see the limiting

Formula (3.88)1.

To establish the dependence of the friction coefficient cf on
the Reynolds number, constructed in terms of the distance from the

leading edge of the plate, Rex, we shall use the integral momentum
Equation (3.20) in the form

Re..

Multiplying both sides of this equation by FRe,/Fc, we obtain

Re. (3-11k')

Intrducing the notation

and noing, that in accord1ance with the relation (3.109) there Is a
unique reiation between (erpa) and (Pp 0e1 Re##), we conclude that
there la a relation

* i(3.116)
wherd the rtunctio'n dop:W ondswly on the oucber Re., and dot* not

opdold on the Mob #t.AabOv X4 anid thet oteat fano TvT n

tot MA- . -

SIailarly on* can Obtaitn
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where * again does not depend on Me and Tw/Te.

Equations (3.116) and (3.118) can be written in the form

(=• , F (3.119)

CC )R. PC- W (3 .120 )

Comparing the Expressions (3.119) and (3.120) with their analog (3.95),

we note that, ii contrast with (3.95), the right-hand sides of (3.119)

and (3.120) do not depend on the Reynolds number Re . As a result,x
in this method of calculation we have equality of the ratios

To determine the functions y x and t the authors use the

relations

Re* - 2 -T X -

-6 Ta.~. -4 +r (400),exp40 -UX-

S.... '(3.121)

24 -A'X - 40),(40 (3.122)

, '" (3.123)

wher•r e - 0,4, x - , Vcic,.

The form or one of the two unknown functions F and
(or %Re ), which determine the friction coeffioient - namely, the

.function P was selected on the basis of an analysis of t;he exist-

i ng semiompirlcal methods of computattnn. The analysis of the seml-
empirical ,tethodo, done by the authors, showed that those methods give
the higheat accuracy. The results, written in the fo.rm (3.311),

(3.119), 01' (3-120), lead to tho rollowing epxresslon tor Pc:
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(3.124)

where K is given by Equation (3.79), and the coefficients w and 0,

appearing in (3.79), are defined by Formulas (3.49). In other woods,

the function F is determined in exactly the same way as was done in
C

the semi-empirical method presented in Section 12.

The second unknown function F~o** was determined empirically by

using the experimental data on the friction coefficient. It was

assumed that the function FRe** has the form

The considerations leading to the Expression (3.125) were also based

on an analysis of the existing semi-empirical methods.

Using the functions *Re**' *x p, and F., defined above, as well

as numerous experimental data, the authors of the method found the
values of p and q by minimizing the mean-square value of

Ct ,nj(of -- 01T ,o•

4
I.TOOP

As a result, it turned out that p - 00.702, and q 0.772. Accordingly,
the expression for Fo** has the form

F 0•
0 (Vo.2 0 "1 (3.126)

To W
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TABLE 9. VALUES OF THE FUNCTION F FOR VARIOUS VALUES OF M andc FRVROSVLEOFMean

Tw/Te

o,05 0,3743 0,4036 0,4884 0,63222 u1,7999 1.018/i4 1,2759 1,571.3
tI,) 0,4331 0,4625 0,5477 0,6829 0,8628 1.0842 1 ,3451 1,6444

0,2 0,52.36 0,5530 1 0,63S8 0.7756 (0,9584 1,1836 1.4491 1.753It
0,3 0,5989 0,6283 0,7145 0,8523 1,0370 1,2640 1,5 37 1,8418
0,4 0,6662 0,6957 0,7821 0,9208 1 ,1069 1,3370 1.6(83 9194
0 ,5 0,7286 0,7580 0,8446 0,9839- 1,1713 1 4o)31 1,6767 I,9(u3
0,6 o,7873 0,8168 0,90336 1 0434 12318 1,4651 1,7405 2, 564
0,8 0,8972 0,9267 1,0137 1,1544 1,3445 1,5802 I,85L' , 1785
• 1,0000 1,0295 1 ,167 1,2581 1,4494 1.687t l ,96Q4 2,.21.3
2 1,4571 1,4867 1,5744 1,7176 1,9130 -.1572 2,4472 2,7809
3 1,8660 1,8956 1,9Ou36 2,1278 2,3254 2,5733 2,8687 2M92
4 2,25100 2,2796 2.3678 2,51M26 2,7117 2,9621 ",2611 3,ouo
5 2,6180 2,6477 2,7359 2,8812 3,0813 3,3336, 3,6355 3,9847
6 2.9747 3,0044 3,0927 3,2384 3,4393 3,6930 3.9971 4,3493
8 3,6642 3,6938 3,7823 3,9284 4,1305 4,3863 4,6937 5,0,5
to 4,3311 4,3608 4,4493 4,5958 4,7986 5,0559 5,3657 5.725912 4,9821 5, 0117 5,100l3 5,247(1 5,4504 5,7088 6, 0204 G,3832
14 5,6268 5,6505 5,7391 5,8860 6,089$ 6,3491 6,6621 7,0271
16 6,2500 6,2797 6,3683 6,5153 6,7196 6,9795 7,2937 7.6603
18 (1,8743 6,9010 6,9897 7,1368 7,3413 7,6019 7,9170 8,2851
20 7,4861 7,5157 7,6045 7,7517 7,9564 8,2175 8,5334 89W27
25 9,0000 9,0297 9,1184 9,0658 9,4711 9,7330 10,0505 1 04222
30 10,4886 10,5183 10,6071 10,7546 10,9602 11.2228 11,5415 9149

""9 Me1  11 12 13 148

0,05 1,9041 2,3738 2.6803 3,4233 3,6027 4,1186 4,6707 5,2591
(.0,1 1,9812 2,3552 2,7660 3,2134 3,6976 4,2180 4,7748 5,3630
0,2 2,0958 2,4758 2,8W25 3,3462 3,8360 4,3636 4,0269 5,52637
0,3 2,1882 2,5723 3,9937 3,4522 3,607A 4,4713 5,0475 5,(i523
0,4 2,2692 2,6560 3,0820 3,5443 4,0435 4,5794 5,1018 5,76108
0.5 2,3429 2,7339 3,462(1 3,6276 4,1303 4,6697 5,2458 5,8584S0.6 2,4115 2,8040 3,2362 3,7048 4,2105 4,7531 5,3324 5,9483
0,8 2,5370 2,9360 3,3721 3,8450 4,3570 4,905t 5,40u1 6,1117
1 2,6542 3,0562 3,49066 3,0748 4,4905 5,0434 5,0333 6,2599
2 3,1564 3,5725 4,0282 4,5228 5,0556 5,6263 6,2345 6,88c1
3 3,5829 4,0184 4,4846 4,0904 5,5353 0,1187 0,7401 7,31993
4 3,9904 4,4290 4,0030 5,4170 5,971g 6,5053 7,1972 7,8673
5 4,3792 4,8174 5,2970 5,8196 6,3817 6,9833 7,6240 8,3033

A 4,7477 5,1905 5,6764 6,2041 6,7727 7,1814 8,0297 8,7160
8 5,4549 5,9050 6,3094 6, q368 7,510t 8,1365 8,7072 0,4977
40 6,1347 0.5904 7,0913 7,6303 8,2241 8,8530 9,5247 (0,235,)
12 6,7955 7,2550 7,7681 8,3121 8,9077 9,5452 10,2245 10,9449
14 7,4422 7,9058 8,4164 8,0727 9,5731 10,2174 10,904 ( t,16321
to 8,0779 8,5444 9,03M7 9,6194 10,2251 10,0748 11,5676 12,3020
18 8,7045 9,1737 6,6912 10,2556 10,8657 11,5204 12,2187 1),,9508

S20 0,3238 9,7952 10,3154 10,88.2 It,407t 12,1562 12,85%5 13,m615
25 10,8467 41,3225 11,8482 12,4227 1330446 13,7128 1.1,4263 15,1811
30 t2,M418 12,8209 13,3509 13,9305 14,5586 15,23r3 SID9550 16,7235
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TABLE 10. VALUES OF THE FUNCTION FRe** FOR VARIOUS VALUES OF Me

AND Tw/T.

0,05 82,7405 93,8950 125,3092 173,1153 234,1634 306,3489 388,2642 478,9229
(, 29,7852 33,8006 45,1092 62,3185 84,2949 110.2803 139,7684 172,4040
41,2 10,7221 12,1676 16,2385 22,4336 30,3447 39,6990 50,3142 62,0825
0,3 6,8983 6,6934 8,9323 12,3407 16,6926 21,8334 27,6779 34,1406

,04 3,8598 4,3801 5,8456 8,0757 10,9236 14,2910 18,1123 22,3414
0,5 2,2779 3,1524 4,207t 5,8121 7,9618 10,2353 13,0355 16,0792
0,6 2,1233 2,4095 3,2157 4,4424 6,0091 7,8615 9,9636 12,2900
0,8 1,3395 1,5768 2,1043 2,907t 3,9323 5,1445 6,5201 8,0425

1 1,0000 1,1348 1,5145 2,0923 2,8301 3,7025 4,6926 5,78832 0,3600 0,4085 0,5452 0,7532 1,0181 1,3328 1,6892 2,0837
3 0,1980 0,2247 0,2999 0,4143 0,5604 0,7332 0,9292 1,1462
4 0,1296 0,1471 0,1963 0,2711 0,3667 0,4794 0,6081 0,7501
5 0,0933 0,1058 1,14i2 0,1951 0,2639 0,3453 0,4377 0,5393
6 0,0713 0,0309 0,1080 0,149t 0,2017 0,2639 0,3345 0,4126
8 0,0466 0,0529 0,0706 0,0976 0,1320 0,1727 0,2189 0,2700
Io 0,0336 0,0381 0,0503 0,0702 0,0950 0,1243 0,1575 0,1043
12 0,(257 0,0291 0,0319 0,0537 0,0726 0,0950 0,1204 0,1485
15 0,0204 0,0232 0,0310 0,0423 0,0579 0,0757 0,0959 Oli 33
16 9,0M68 0,0191 0,0254 0,0351 0.0475 0,0622 0,0788 0,0972
1t 0,0141 0,0160 0,0214 0,0295 0,0400 0,0523 0,0662 0,0017
20 0,0121 0,0137 0,0183 0,0253 0,0342 0,044 0,W07 0.0700
23 0,0087 0,0099 0,0132 0,0182 0,0246 0,0322 0,0408 0,0503
30 0,0066 0,0075 0,0101 0,0139 0,0183 0,024A 0,0312 0,0385

,()5 577,5949 "683,7162 716,&344 916,5708 1042,020 1174,722 1312,M0 1458,11
0,. 207,9243 240,12M1 280,8467 320,919 375,3280 4.2.87931 472,?27 U34,1767
0,2 74,8492 K4,6012 103,2599 118,7770 135,1119 152.2293 170.693 OM t, me
0,3 41,1745 48,7395 56•,03 45,33a2 74,3X0 83,7414 93,3716 103,.000
0,4 211,9444 31,8940 37,1718 42,7577 48,8340 5,80t0 M1,2,•92 t17j'i0,5 19,092' 22,934O 26,27 3",7729 35,0050 39,4398 44.oll 48,M73
O.1 14,8221 17,5454 20,4482 X '.• U 26,.757 3u,1435 336 W42 FW33M46

9,8 096995 11,4810 13,3312 14,3130 17,50M8 10,7271 32,04M 3U,40
1 6,9408 8,2434 9,6305 t1,0777 12,8012 14.1077 15,8641 17,59*1
2 2,5130 2,9747 3,46M8 3.S87M 4,536m 5,1110 5,71M 6,3342
3 1,3824 1 ,3• t ,9071 2,1937 2,41354 2,81t5 3,1418 3.4100
4 4,%946 ,10708 1,2480 1,4355 1,1330 It" 1W98 a, W14 24,403
5 051 0,7707 0,8M 1,0M3 1:1752 1,3241 11,470% lm
11 0,4976 0,5801 0,6862 (1,7897 oA81383 1,0321 tIIJ3O t ,2S11.323M 011,305 0,4403 0.5118 0,5078 0ý,603 OJ4(1 Ixt3u0
I0 0,23t44 0,774 0,32M3 1,3719 ',4231 01,47 0,532i6 0,•S#W
12 0,1791 (1,2121 0,2471 0,2843 0,33,4 t,0443 (3,41 0,4514
14 0,1427 UAW*X 0,1969 0,2"5 0,2O76 tl,211M 0.3244 o,.3Ma~
fit 0ji72 0,.13M 0,1817 0,1860 0,2511 0,5114 0.WA 0, Ws
18 (),0985 0t11017 0,1359 O 0.,158 057709 0, 4 0,32m O,4t8
21) o04844 0WOO190 0,1164 0,1339 0111•13 0,17516 0,lot? 0,2312
25 0,017 (,6719 0,0338 1,t3U5A 0,0140 0,112M ot13wo 0.1ml
311 0,1044 0,t1 9 o0,040 0.0737 0,0(*3 0,004A 0,10M 0 O111570
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TABLE 11. VALUES OF THE FUNCTIONS F~ C. P0 f p C PRe *,Re** AND

e ~Re.

6 ,0 t 9 7 2 ,873.i.1"i 5,758-1010 0,uOOO 0.01Q105 .

v.0116 3,K5. ( 4,610. ttP )0'0(W uj0121Ut t17.62 3I .I)'t10

U.1bI~~~~U 0.000,~I I ft8 I4JI.1 j~~) tI00 1.)

t42 xI 26 I . 8I P 930 A 0)15 1.40. 1.

0.~(~ MI.7)Q.

A Qop;uIrlon of' thi* method with the 6-p~If*nitA1 da4 ftv ~
th iathori or the mtatho4,, ztiovtd that It muolted It% A ff-MV

error Which vas swlls 46 00w*d with the othor Mthodt

To atoplity thet 000putAttio, the twoosar auxiliarytncln
hauf* boen tabulated1 (tab1~g 9 - 11).

The oOmIutation~i proceatre atordlog to th# **t~vo stvth4 It

la rallowt. 41von tho Mich oikebet' 14 rd the t aptriltueo rictqt.

*wne vo U4 al to deteralno thle ru"uOtif Pt. Thv uat



Equation (3.126) or Table 10, we find the function FRe,, and then-

using Formula (3.115) - FR Finally, from the given Reynolds

(Re** or Rex) and functions FRe (or FRe**) and Fc, determined

earlier, we use Table 11 to find the values of cf and cF.

This method of calculating friction in the turbulent boundary

layer on a flat plate does not involve any new physical hypotheses.

The expression for the function Fc was assumed to be the same as in

the semi-empirical method considered in Section 12. The function

FRe** was found in a purely empirical way. All in all, the method
can be recommended as a simple engineering method for calculating
friction on a flat plate.

S 15. Relationship between Friction and Heat Transfer
on a Flat Plate (Reynolds Similitude). Recovery Factor

The specific thermal flux between a gas and a wall according to

the Fourier law can be written in the form

- or- IFL. (3.128)

Paaring In thiB equation from the temperature to enthalpy C&die;r)

and performing zimple rearrangementxs, we get

_ (3-129)

ler#

~ if" (3.130)

To find the detiva•,lV (4I/35), we turM to the enei equation
In t"~ Croaec varlables (1.65)(•O" . In tht C4ee of A f6ow of a

Pootnote (20) app&aft on pae I80.

I , . .- . ...... ,-



homogeneous gas (3ci/au - 0)over a flat plate positioned at a zero

angle of attack (dp/dC = 0) the equation becomes

fi•t_ ;•ll I- a llt•, -• - O1 _1 o
P1 ([t F)F.j 0.(.3)

d diu UU

Here Prm Pr in the laminar sublayer and Prm = Pr in the turbulent

m m T
core [see Formulas (1.103) and (2.33)].

Below, for simplicity, we shall assume that the enthalpy h is a

function of the velocity u alone, and does not depend on the longi-

tudinal coordinate 4, i.e., h = h (u). The assumption may be

jusl'ified if one notes that it is strictly satisfied if the Prandtl

number and its turbulent analog are equal to unity. In this case,

as we know, we have the Crocco integral. Consequently, one can

expect that, for a small deviation of the Prandtl number and its

turbulent analog from unity, the depenidence of enthalpy on the

longitudinal coordinate will be insignificant. Taking advantage of

this assumption (ah/4 = 0), we bring (3.131) to the form

o- -gfe L ,up (3.132)

- I

And the prime denotes a d- viv-tive with respect to the dimen3ionles3

velocity •. The ooundary ccnditions for Equation (3.132) are

~' 1 (3.133)
-~4for a~,

Intektrat:;i1 Equation (3.132) onCe, we get

A ~ (3]13~4)

kN. .x 1P-



An integration of (3.134) leads to the relation

iý(4)= • "p• •) ~ R() ( 3.135)

where

S(ai) Pr{Srmexp 0.. c - Pr.f) Ijdal' (3.136)
0 1

R (al)=Pr exp[ (I -Pr~)
0 1

U T

X{Jý xp [ý(I -Prm) dal di. (3.137)
0 1

Using the second of the boundary conditions (3.133), we find from

Equation (3.134) the derivative (h')w, which is necessary to deter-

mine the thermal flux:

Pr.~ ~ S () 1)
(h~wrrn0)[-hio+ I* V(3.138)

Substituting the expression (3.138) into the relations (3.134) and

(3.129), we obtain

So) U r ()) . (R_. r R (4)], (3.139)

Ik (3.140)

The quantity

14,= +2R( -)T (3.1)41)

is usually called the equilibrium enthalpy of a thermally insulated
suriface or the enthalpy of recovery. The factor

-2R•1•), (3.142)
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in the expression for the equilibrium enthalpy (3.141) is called

the recovery factor. The recovery factor characterizes the differ-

ence between the value of the equilibrium enthalpy Hr and the

enthalpy of an adiabatically and isentropically decelerated gas

He =he + 13e /2. In other words, it characterizes the nonadiabaticity
of the flow processes in a boundary layer.

Let us introduce the dimensionless heat transfer coefficient

(Stanton number)

Chq
(3.1•13)

Then, using the expression for the local friction coefficient c

(2.85), we find the following relation from Equation (3.140):

21h 3 s) (311414)

The quantity S(l) is called the Reynolds similitude parameter.

Thus, in order to calculate the local heat flux qw' one must
know the recovery factor r, the Reynolds similitude parameter S(i),
and the local friction coefficient of:

q4~.hS(I(A4Tr Ut(3.1145)

The recovery factor. The general expression for the recovery

factor with a variable Prandtl number Prm. in view of Equations
(3.142) and (3.137), has the form

146

If the generalized Prandtl number Prm can be conslidered const.nt

over the cross section of a boundary layer, then Equation (4.1146)
will be contiderably simplified, and after simple rearrangements i1

will become
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0e

r--* :" (I'' '~i)/,.(3.147)

When the generalized Prandtl number is equal to unity (Prm 1)

-- which, within the framework of the double-layer Prandtl model of

the turbulent boundary layer, means that the Prandtl number (Pr)

In the laminar sublayer and its turbulent analog (PrT) In the

turbulent core have been assumed constant and equal to unity -

the recovery factor turns out to be equal to unity (r = 1), as can

be seen from expression (3.147). In this case, the equilibrium

enthalpy of a thermally insulated surface is equal to the enthalpy

of an adiabatically and isentropically decelerated gas: Hr He•

Thus, it is only in the case Pr a PrT a I that the flow in the

boundary layer becomes similar to adiabatic flow.

In the case Prm =const 0 1 and in order to determine the

recovery factort as can be seen from Equation (3.147), one must

know the distribution of the tangential stresses across the boundary

layer *

As was already noted in Section 10, there is very littlt infor-

m-tion about the character of this distribution, even in the ease of

an incompressible fluid. According to the experimental data obtained

by Klebanov and shown in Figure 2, the relationship between the

friction stres' and the lateral coordinate is close to linear, and

can be approximately described by the expression (3.2). The depen-

dence of the friction stress on the velocity in the turbulent core

or the boundary layer has the approximate form shown In Figure 3, and

is described by Equation (3.5). As can be seen in Figure 3, for

the value C. n 30 and the velocity range 0 < a t 0.8, the friction

stress varies within the range 0.9 1 t 4 1, which makes it possible

to consider the friction stress in the boundary layer to be

approximately constant and equal to ltd value at the wall. Ir wo'

make this aasumption, then, within the framework of the double-layer

model, Equation (3.147) leads to the tollowing expression for the

recovery factor:

... ..



, = , N • ) a,
(3.148)

Here u, is the dimenslonless veloc.ty at the boundary of the laminar

sublayer, defined by Equation (3.31). We note that 1r obtaining
(3.148) the integration interval < c < 1 was subaivid,-1 into two

intervals: 0 < u < - laminar sublayer, w•here Prn, Pr, and
- _< 7 _< 1 - turbulent core, ,h.-Pr 24 ItrT

Unfortunately, up to the present time there has been a lack of
suff1clently reliable data on the value of the turbulent Prandtl
number. The attempts to directly estimate thte value of PrT from

the measurements of the velocity and temperature profiles for a
flow of -ir In tunnels and channels lead to values of 0T which are
S•omewhat smaller than unity. However, in experiments on heat
Strasfer in liquid metals one observed Pr 1. This deviation of
PrT from unity is apparently due to the diverse effects of the
:oleeeular Lranster inaide the curriers of turbulent transfer - 1.e.,
rliaýt gaa volumes participating in turbulent mixing - on the
m cehanism or mom•utum and heat transfer. A certain indeterminacy of
the value of PrT Iz sometimes used to obtain a better agreement
Lt�w•v�•theory and exrPriment through a suitable choice of the
rrad:4tl number. Unltil the proolem of the value of PrT .•s ultimately
as•tvM4 experientally, one should, aa many authorz often do, 3et

1t2ý vaU14 to unity.

.s.ttinn Pr., I in the expression for the recovery faotor

r-I-ht(3.149)

pea' Prdti n•uribr•• cloae to unity for the vlo"-Ity at the boundary

ol of lhw lwzlnar auttlayq-r u, rangitig from 1.2 to 0.8, 1fluation (1.149)
t64 to Withinl los ho~ replaetd by~ thd tollowing sllmplo rormula:

~otnoto 1 11) and (22) AppirAr' On lr'z ' t-

D - 1-



Fý) a'(3.150)

F'or Pr 0.72 (air), Formuala (3-150) leads to a value of the recovery
factor r -0.895, which Is in good agreement, as will be shown below,
with the experimental data.

In additioln to us~ng the double-layer modex. and simple assump-
tions about the distributiCon of the friction stresses in the boundary
layer, attempts were also made to calculate the recovery factor
using a more complex three-layer Karman model (401.

It will be recalled that according to this model [41) the
velocity pxrofile In the turbulent boundary layer of an incompressible
fluid 1.ý. .lvided into three segments: 1) laminar sublayer in which

9fox,3l~~

21 burrer zone in which

ror (+In for

3) fully turbulent region:

9 4.5 +2.5h 14 for > )3O,(5.~c

In the paper by Van Driest [~423p in the first two regions the
friction 3treas was aasumed to be constant and equal to Its value
at the wall. In the third region$ the distribution of the tangential
stre~ses was represented in the form (3.5). The fial tErorula ror
the recovery ractoro obtained by Vant Driest,, has the form

14. ± 4.5?

A TI
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This formula, as implied by the above discussion, refers to a flow

of an incompressible fluid. As shown by Van Driest, Formul3 (3.152)
can be generalized to the case of a compressible gas (without heat
transfer) if instead of c,0 the quantity ca multiplied by(0 +rL2A1.2,

is introduced in it, where is understood to be the local friction

coefficient for a compressible gas. In calculations based on
Formula (3.152), it turned out that if the friction coefficient for

an incompressible flow, f0, is used and the value of the turbulent
Prandtl number is taken as 0.86, then, within the Reynolds number
rvnge 105 < Re, < 10 , the recovery factor w.ill be a constant equal
to 0.86. Here the value of the Prandtl number was set equal to 0.71.

The result of ta.king into account the efrect of compressibility
on the value of r in Formula (3.152), by naving introduced In th4;
iormula the friction nefiecient, ca. for a compressible flow multi-
plied ýy (I+ rty.), is th-at the valuea of the recovery factor
depenA only slightly on the MINah nvyber (for 0 < Ae 5) (Figure 30).
PSFlgur 30 shews two theoretical curves. The frsat curve (1) va3
calculated for the conditions of a wind tunnol (otagnation temperature
TO 3110 K)0 tht second for frie flight conditions (temperature at
!nfinity TfQ a 2R20 K). The differenco betwueen thoao curvez 14
explaine.1 by Var Driet ,A due to the dtifeaenr oh 'ier of the
viir-AtIon i,:f the moleoular Prandtl number in o wind tuhnol a3
Coopazrd t'.Ith Croo rl.Iaht.

turtulent boundary¢ layP' In
SV.go.4i 1-hv thor rao.o ftoov 0.9 to W.,

wh'qrta no l'able deapendence of' r on the •a-0h nuzbee x wa!i oberved.
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Later a whole series of experimental studies aimed at deter-

mining the recovery factor were made. The results of some of' those

studies, done between 1)4U9 and 1951), are listed in Table 12 which

is reprinted from a paper by Kaye [43).

The most accurate measurements of the recovery factor have been

made during the past ten-fifteen years.

TABLE; 1.2

Authors Year Model le.0 M e I r

Wimdrow 1949 t:one, paaood2.7 2 0.885 + 0.008
4.8 1.5 0.902 T 0.005

- 2.0 0.894 T 0.008

:ýtolder 1950 plate 7 2.4 (0,884-0.897

Tendeland ____ oo7
Hiltn '951plat 102.0 0.880 + 0.004

Eber 1952 cone, cone- 1.0 2.81 0.92
cylinder 0.25 4.2 0.97

Klris 1952 cone, con*- 7 2-3.4 0.882 0.007
Sternberg cylinder

Sleek 1952 P1ate 3 2.4 04906

Lson 19fs2 100 oon* 0.4-4i 2-3.8 0.882 + 0.006
3cheret' 406 cone- 0.3-1 3-3.8 0.885 £0,011

cy lindet'

P(23) teet~~ n the couarse ot the experla#0nt,

v*&aurejwnta were m~ade or the savrfte toEmporaLkre or a thermt~ally

Itnaulated plate and of the Plach *naer Ott the outer #dig# or the
boundary layer. The recovery factor wod calculated tredu tho tormlia

Poot"Ote (2,1) apotara on pute 181.



, (3 0,2 153)Te O r ,2MI• OM

wihere T is the tempe-'ature of an adiabatically and isentropically
decelerated gas. The measurements were made at the Mach numbers
M = 1.69 and M = 2.27. The Reynolds number was varied from 106e 7e
to 107. The results of the measurements are shown in Figures 31
and 32. As can be seen from the diagrams, the recovery factor
decreases with an increase of the Reynolds number approximately
from 0.90 to 0.89, and a majority of the experimental points.lies
near the value 0.89.

J16 TF1 ,-*-H~j..t-~±-~-t- -7••.;,uTh.o,. .

Figure 31 Figure 32.

The Shoulberg, Hill., and Rivas experiments T44]. In the
experiments, the recovery factor was measured on a flat plate placed
in a wind tunnel. The experimental and computational technique used
was the same as in Pappas' paper just considered. The measurements
were made within the following range of the Mach and Reynolds
number; 1.9 . Me :J 3.14.106 <_ Rex ý 17"106. The results of the
expe.t-iients are shown in Figures 33 and 34. As can be seen in
Figure 33, the recovery factor decreases somewhat with an increase
of the Reynolds number. Even though the decrease in the Reynolds
nuwber range investigated is only about 0.5%, nevertheless, the
tendency toward a decrease can be seen very cleavly. As far as the
effect of the Mach number on the recovery factor is concerned, as
seen in Rigure 34,the effect in question is absent in the range of the
M numbers investigated. The experimental value of the recovery
factor (Figure 33) is smaller than its value calculated using Formula
(3.150), in which the Prandtl number was determined at the
temperature at the wall Tw = Tr, by approximately 1%.
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r lye =2 x T - 111111 J

4? 12 JU 4S 122
38 -41H S8 2 74 88 P8 W 0ISI 1

Bex Figure 34

Figure 33

Tendeland's experiments [45]. The measurements were made on
5 the surface of a cylindrical model with a conical nose (cyllnder

diameter was two inches, cylinder length was 14075 inches, the cone

angle was 200) in a flow of air with the Mach numbers M, = 3; 3.44;

4.08; 4.56 and 5.04. The local Reynolds numbers per 1 foot (Re /foot)
6 6 6 2816 ad2l06were equal to 3-0;410o 3.610,28i an .z10 , respec-

tively. The r'ecovery factovs were calculated from the temperatures
measured along the model under equilibrium conditions. The local

values of the recovery factors were determined after making correc-

tions for the relatively small radiation losses to the cold lateral

wall of the wind tunnel on the basis of the local values of temper-

atures, local values of the Mach numbers M., and the values of the

"deceleration temperature.-

The results of the measurements are shown in Figure 35. The

abscissa axis in this figure measures the distance from the nose of

the model in diameters. The plots make it clear that, for M. = 3.00,

3.44 and 4.08, the recovery factor varies approximately from 0.88 to

0.89, where the values of r on the conical nose are somewhat smaller

than those on the cylindrical portion-of the model. For M. = 4.56

and 5.04, the values of r near the junction of the nose with the

cylindrical portion are much smaller. This phenomenon is explained

by-the author of the paper as due to the large pressure drop at the

V Junction and the temperature gradient along the axis of the model, f

which resulted fn a reduction of temperature, and as a result, in

a significant error in the :determination of r in the regi.on of the

:Junction.
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Figure 35.

The Adcock, Peterson, and McRee experiments [46]. The paper
presents the results of an experimental investigation of a turbulent

boundary layer on a cylinder for the Mach number M = 6 and theU, e
Reynolds numbers, constructed in terms of the distance from the

leading edge, 5 < Rex'10- 6 < 33. The dependence of the recovery

factor on the distance from the leading edge of the model is plotted

in Figure 36. Just as in the papers by Pappas, Shoulberg et al.
that have been considered above, one observes a tendency toward a

decrease of r with an increase of the Reynolds number. The values

of the recovery factor in the Reynolds number range investigated

lie within 0.875 < r < 0.895.

d 485- -e 1 6 0 4 2 2 8 40

#t~~X MM :•

i Z• mm

Figure 36.

Summarizing the experimental data obtained by various authors
which were discussed above, we can draw the conclusion that the

recovery factor depends very slightly on the local Reynolds number
Rex and does not depend at all on the Mach number. In the Reynolds
number and Mach number ranges investigated (up to Me = 6), the valueo

FTD-HC-23-723-71



of the recovery factor lie within 0.88 < r < 0.90. We should

observe the satisfactory agreement between the Van Driest Formula

(3.152) and the experimental data in the Mach number range inves-
i tigated.

In order to develop sufficiently reliable theoretical methods

of calculating the recovery factor for supersonic velocities,

detailed experimental studies must first be made of the structure

of the laminar sublayer and the buffer zone, as well as of the

distribution of the friction stresses in the turbulent boundary

layer at those velocities.

Until a satisfactory theory of the recovery factor is created and

the experimental data at high supersonic velocities are obtained,one

should use 0.88 < r < 0.90 in calculations.

The Reynolds similitude parameter. A general expression for

the Reynolds similitude coefficient, in view of Equations ( 3 .144)

and (3.136), has the form

2j Pr~x [- ( -Pn ''=dd
0 1

If the generalized Prandtl number Prm is constant, then Equation

(3.154) becomes

2"h p en-x, \-
(P dil,,\ m• (3.155)

If the generalized Prandtl number is equal to unity (Prm = 1),

which within the framework of the double-layer Prandtl model implies

the assumption

Pr Pr

Equation (3.155) leads to a classical expression for the Reynolds

similitude
,h 2I, (3.156)
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For Pr, const 1 1, in order to determine the Reynolds

similitude parameter, it is necessary, Just as in a calculation of

the recovery factor r, to have the distribution of the tangential

stresses in the boundary layer, i(U). Under the assumption (3.1)

(T - const = Tw) and using the aouble-layer model of the turbulent

boundary layer, we obtain from Equation (3. -5) the following
expression for the Reynolds similitude parameter

h = p r,- (p,- pl,) 4].1•- ((3.157)

The turbulent Prandtl number is taken as equal to unity (PrT = 1).

Then expression (3.157) will become

i • Ii-- i --h~al",(3.158)

When 5 ranges from 0.4 to 0.9 and the Prandtl numberv are close to

unity, the relation (3,158) can, to within + 10%, be written more
simply as

For Pr 0.72 Formula (3.159) gives- the value 2 ah/c. - 1.24. U9irn
the same aasumption# as those involved in u derivution of FormulA

(3.152) tror the recovery ractor, Van tDrlest24 obtained the rallow-
in; expr'esion for the Reynolds uimilitude purameter:

This formulft, as noted by Ito author, io valid for 0. j PrV. it 1.

'It ito juet no in Ithit clculation or r ovIng r~POM312) It Irs
recI~enedthbt, the turbultnt Prandtl huusbov Oqual ti O.M bo tAosd.

To a~eoount for tho efrr*t or I i fity~d host trawop~
on the AeynoldA aimilitude paraoter o0e thould, ato-041 to Vt%

Driistt Introduce in th# 01pretrSlon (3.160) a rattor tt)1 r' .

FooTnote (23i) ppear o. ps3e



multiplying cf. cf should be understood to mean the local coeffl-
clent in a compressible gas.

The results of the calculation of 2Ch/Cf according to Formula
(3.160) for the conditions present in a wind tunnel (T e - 3380 K,
curve 1) and in free flight (Te = 5000 K, curve 2) for various Mach
numbers are shown in Figure 37. Figure 38 shows the results of
calculations based on Formulas (3.157), (3.158), (3.159) and (3.160)
f'or a flow of an Incompressible fluid as functions of the Reynolds
number.

ýwo

Figure 37 Figure 38

To eviluate the accuracy o" the formulas given above, le•t u
turn to the experimental data.

Kgrieental-data an te yo4 Pitu nr~meter2a4t

The experlw~ntdl data on heat tranafer and rrittion obtained by
VAriOU4 Voerko up to 1954 havo be*" anaIlyed by St~itt (47). 0:1 the

b4#or the resulta or W3i anlyi (ate PI~urt 39), Seirtf &urrvod
at the tonclu3lon that In the turbulimt boundary layer the *Xperl-

",tldata caei be ropmoented Uy the frotaula to within 15- 1

It 1t'houid be noted that thoe pr1iitA1 at"A ulod by 9Of wr
"Otalned for the rolltwing Mach nuwber rango 0 Ne i 4.

1



Due to the scarcity of the exper-
.. _ imental data and their low accuracy,

Seiff failed to eýAablish a relation

-a , : between the Reynolds similitude

1)coefficient 2ch/cf, on one hand, and
iV I the Reynolds, Mach numbers and the

._:temperature factor, on the other.

A4 Relatively recently, L. V.

SFigure 39 Kozlov [481, on the basis of an

analysis of experiments involving a

direct simultaneous measurement of the
local values of the thermal fluxes and friction, proposed the follow-

inC more accurate relation between the Reynolds similitude parameter
and the parameters listed above;

Fo T¾T 1, aad Re~ 4.3T.106 Formula (3.162) Chang'VS

Into ,Porula (3.141), and the latter ha been thor•oughly verified in
us exporiento on the flow of an incocIDNoible fluid in tubea

4nd over Cr.aL plates.

%rtls, 1h (3.162) *44 obtainoed by I.- V. Kouluv aor the Followint

P44 $l05 4 Re? C 2l0 IT

The oerte' or tt~k 1h4ivi+dU4al ara~tztrs on ratio 2C%/a Wan
U-0 0tvetn In rIgurt 40, in which, Juat as !" Figure 39, all Plots W41re

06tAi0wd on thr basis orf P-rnUla (3.162)0 and Ch and aWere detor-

tin rov 044 tn onditions on the boundltry of the boundAry layor.

Piparoo 4' 4snd lsx1pty that, vith un Increase or the Mach and

* iRe~~lwlstnutber:, Xe And Rex, the value Of ?ch/%r d"erAse, appreAche
W vluoe t-Atot-- uit. fact~t that At lag ahnum~bor# thi

kouoj Iaeyn 1Js mlitude pargftotor It dlot to uityý bas. also been C-on-
fitfle by the oxper1~ental data obtained by Bill on a flat. Plate for
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Figure 40

8 < Me < 10 (Figure 41). The values of the parameter 2ch/Of,
as seen in Figure 41, lie in the range 0.9 < 

2 h/Cf _ 1.1.

An analysis of the theoretical and experimental data given
above shows that, in spite of the well-known achievements in this
area, the problem of the relationship between heat transfer and
friction as a whole requires further theoretical and experimental
investigation.

1 16. Turbulent Boundary Layer on a Cone

at Zero Anile of Attack

Along with a flow near a flat plate, another case simple enough
for theoretical analysis involves a flow near a cone, positioned at
zero angle of attack, if the cone angle is such that the front shock
wave forming the head of the cone is attached (Pigure 42). In this
case, the flow of a gas behind the shock wave will be "conical", and
the pressure on the surface of the cone will be constant. This
makes the flow in a boundary layer on a cone resemble a flow near
a flat plate. As shown by Van Driest [49], there is a simple
approximate rule for converting the local friction coefficient for
a plate to the analogous coefficient for a cone.

In order to establish this rule, let us turn to the integral
momentum relation (2.80). In the case of a cone with an impermeable

PTP-11C-23-73-T11.



surface (vw 0), the relation takes the form
d6*" 6' r.,

- + "- •( 3 . 1 6 3)

Here we used the fact that rw - x sin 0 (Figure 42): e is the half-

angle at the vertex. Equation (3.163) can be easily transformed to
the form

Red Re.=P L- 2d (Re* Re,).
Pu(3164)

where the parameter • is given by Equation (3.8), and the Reynolds

numbers Rex and Re** are given by Equations (3.18) and (3.17).

If we assume that the mechanisms of flow in the boundary layers

around a cone and on a plate are identical (have vanishing gradients,

i.e., dp/dx = 0), then one may expect that the functional expressions

for the velocity profile and the momentum loss thickness for these

bodies will also be the same. In this case Equation (3.52), obtained

for a flat plate, may be used for the Reynolds number Re**. Making

a somewhat rough approximation (Just as in Section 12), i.e.,
neglecting the second term on the right-hand side of Equation (3.52),

wve obtain

L ) (3.165)

Upon substituting expression (3.165)
in Equation (3.164) and integrating

40\o •"I the latter with the same accuracy
"a••I in Section 12, we obtain an

d • " "analog of Equation (3.57) for a

cone:

Figure 42
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Since the parameter g is equivalent to the local friction coeffi-

cient cf [see Formula [3.81)], then a comparison of Equations

(3.166) and (3.57) yields a simple rule according to which the

local friction coefficient for a cone is equal to the value of this

coefficient for a flat plate calculated for the Reynolds number Rex

equal to one half of its value for the cone, and the same values of

the temperature factor and the Mach number at the outer boundary of

the boundary layer.

If one compares the local friction coefficients for a cone and

a plate at identical Reynolds numbers and identical values of the

temperature factor, and the Mach numbers at the outer boundary,

then it turns out that, for a cone, these coefficients exceed their

values for a flat plate by 10 - 15%.

An analysis of the relationship between the local and average
friction coefficients for a cone and a plate involving the use of
the integral momentum relation, power-law velocity profiles, and the
drag law was done by Bradfild (50]. As a result, he obtained the
relation

t

,,,, [ t[•-+1 .I (3.167)

where 1/n is the exponent in the expression for the velocity
profile n/1'. *(,,'i,. For n - 7, Equaticn (3.167) yields Cfk/CfpZ =
1.18. When n changes from 5 to 10, the ratio Cfk/c rZ changes from
1.13 to 1.23.

"For the average friction coefficients, it was established that

2ri (3.168)

For 5 < n < 10 Equation (3.168) implies that 1.035 <Ck/CF Pa/ for
n.?.ck/OPP P1 1

'TD-HC-23-723-71
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Along with the analysis mentioned above, Bradfild~s paper gives

tho resulto of measurements of the local friction coefficient for a

conre with tha half angle at the vertex enual to 15', Mach number M

q.7, an l various Reynolds numbers. The results of the measurements

are shown in Figure 43 (open circles), solid circles indicate the re-

sults of the measurements done by Coies(2•) on a flat plate under the

same conditions; the dashed line represents the plot of -fk = 1.18cfpz.

As seen in Figure 43, friction on a cone exceeds the friction on a

plate b.. anproxlmatelv 28%. Apparently, both the Van Driest rule and

Bradfild's relation (3.167) result in magnitudes of friction on a

cone that are somewhat understated as compared with their actual

values.

A more definite conclusion regarding the problem in question

can, apparently, be drawn only after new experimental data are

obtained.

§ 17. Turbulent Boundary Layer in the Presence

of a Longitudinal Pressure Drop

The problem of the turbulent boundary layer calculations in

the presence of an arbitrary distribution of the longitudinal

velocity component at the outer boundary of the layer, Including

the most difficult part of the problem - namely, a determination of

the poinL (line) of separation - even for an incompressible fluid is

3till far from a complete solution (26)

The effects of compressibility and heat transfer between gas

and a surface complicate the problem even more, leading to nddJ-

tional difficultiea whose character was described in the preeding

7ectlons. The existing methods used in turbulent boundary lave~r

calculationn for high-velonity gas flows in the presence of a

lon•gtudinal pretsure drop and heat transfer between ttne gasi and the

* "irface usually represent a generalization and a further development

F'ootnote-, (25) and (26) appear on page 381.
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II

of the methods used in turbulent

boundary layer calculations for an

incompressible fluid. A character-
istic feature of a majority of these

• Iii;•a~ methods Is the fact that they use

S ?4v •integral relations (for momentum,

Figure 43. energy, angular momentum). The

number of unknowns appearing in those

integral relations usually exceeds the number of equations. There-

fore, it Is of basic importance in these methods to select families

of the velocity and temperature profiles that could be used for

substitution in the integral relations, instead of the actual ones

that remain unknown. In the present state of the theory, even that

selection is a difficult problem. In order to specify the velocity

fields, in addition to the semi-empirical theory of turbulence

proposed by Prandtl and Karman, sometimes single-term power-law

formulas with a constant(27) or variable exponent depending on

various parameters are used.

Detailed development of the semi-empirical method for turbulent

boundary layer calculations in a gas in the presence of heat
transfer and arbitrary pressure distribution in the outer flow was
giv•n by L. Ye. Kalikhman [51]. According to this method, baued on

the formula used in Prandtl's semi-empirical theory, a determination
of friction and heat transfer In a boundary layer reduces to aolving

linear differential equations which are approxinately equivalent to

the integral momentum and energy relations, followed by a transition

from tho functions found to thooe that are still unknown (i.e.*

friction and heat transfer coefficients) using auxillary tablea

and graphs.

A method p.,oposed by S. S. Nutateladse and A. I. Leontlyev

[523, baaed on the limiting laws ot rriation and heat tranjfer,

Pootnote (21) appears on page 181.
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and designed for turbulent boundary layer calculations on a curvi-

linear surface, is essentially akin to the semi-empirical methods.

The papers by McLafferty and Barber [53] and by Sasman and

Cresci [54] are an example of the empirical approach to the problem

in question. In the latter paper, the well-known empirical formula
proposed by Ludwig and Tillman which related the drag coefficient
to the momentum loss thickness 61* and the form parameter H* - 6*/"*n

Z in the theory of the turbulent boundary layer for an incompressible

fluid is used as the drag law. A generalization of this formula to
Include a flow with variable density is done using the defining
tempe'•ature method, proposed by Eckert (55]. Characteristics of the
turbulent boundary layer in Sasman and Crescl's paper are found by

* stmultaneously stlving the integral momentum and angular momentum
relations.

Amonr other tftthod4 used Pn the theory of the turbulent boundary
layer In the proesene of a b.ngitudinal pressure gradlent, one

* szhould mention a vwethod proposed by V. M. levioe(6]

Uderrn~ te a~e furd-tnln to the original sOUrces, WO

4 huld note I touture -hich 1,4 of a fttaowty or %th
Iohl t. 1% the tao rt Lhutit l-st~strfamilies of velfcilty

~4r~fOr# Uen-C u7e. hist la APP4aently One. or the MAin reaonstý r-tr
t*g fc ory reultst *hbtaWine In eutay V~~e h~f thvigt methods

Azý rtar tbio we- ýkol ;-attat' ehd un4 UP# ed they Aro

At The Present II4toInterrgtig t ofdvetn.

an at4uatintt, the ýtAate Zof tive tlm. Asg A vhýAe wie it*I-
r!i44# that thO* et15titi. ýet A#V usdIf thv theorv af thetwnf*t

'0 Oeroi spesoi Oar ~ wsrt anv akrti'trf ran
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Figure 44

Taking the above into account, we shall limit our attention

here to a presentation of those computational methods in which the

effect of the longitudinal pressure gradient on rriction il

accounted for only through the integral momentum relation, and the

direct effect of the pressure gradient on the velocity profile is

neglected. These assumptions, as shown in experiments, are

approximately valid for flowa with negative and umall positive

pressure gradients. The latter restriction means essentially that

pre--eparation and separated flows are excluded from the discuss•Ion.

co.taticnal mtho bjvd on the linearisetd Integral Momtentum

4gltion. Lot us consider a steady gas flow over a curvilinear

surface (Fiegure 4J4). We sh-4ll introduce a curvilinear coordinate
""ystem. The position of a point in the Clow will be characterited by

the Y coordinatlt Meaurod alaon the surface iroa the criti•al point,

4n, the y Ooordinate mewasuredd Along the nornal tO the stur~ace.

Lot us turn to the intoor_,al 44*wntwm MAU(,~ MOM which in

"the c"se of a f low tw-ear a nportw a.bl. sur-ae (v,* 0) bot ,6)s

Poe later discu#41ion, It is coOVenientt to write Zaawtzont (3.49) 11n
a osawuhat #o'diliod tort whicah It Obtaine-d b:x elifintiftnS the tern

( involing K" r#o#t this *qu-AtS04% With tht mid erE0 uton(.7)

.ktin4 these ciaple Vearflnements, thle result I-4

4' .
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P'..d *..... . 3.170)

Here r, is given by Equation (3.8).

Furthermore, applying the technique introduced by L. Ye. Klikhman

in the paper already quoted in this section, we introduce a new

variable

z P=;U .6*
(3.171)

The first term on the left-hand side of Equation (3.170) can with

the aid of (3.171) be written as

.-I d .dzp Uedx(P 'u p)U,• 2Ad" (3.172)

Here we use the notation

dlnz 2
d In (pU,6') - dIn(pU,6 (3.-173)

' din ;

Using Equation (3.172), we transform the integral momentum relation

(3.170) to the following form

d.- [ -p fV ) + p,0UA. (3.1714)

It should be noted that the differential Equation (3.174) for the

function z is Just as exact as the starting-Equation (3.169).

Before proceeding to the question of integration of Equation

*'i (3.174), one must establish the dependence of parameters A and H*,

involved in this equation, on the unknown function z. To establish

this dependence, one must know the drag "law", i.e., the relationship

between the momentum loss thickness (6**) and friction (S). Since

here we only discuss those flows in which the direct effect of a

longitudinal pressure gradient on the form of the velocity profile is

TFTD-HC-23-723-71 J57
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significant, then it is obvious that the drag law for a flat plate

(3.52), established in Section 12, may be used as the drag law here.

One must only keep in mind that the parameters Ue(x), W(x), 8(x),

etc. at the outer boundary of the boundary layer are in this case

variables. In addition, just as in Section 12, we use the "approxi-

mate" expression for the drag lAw for simplicity, omitting the second

term in brackets in Equation (3.52). In order to compensate for the

error thus introduced, we put a certain constant C! in the drag law,

whose reasonable selection will enable us later to make the result

obtained more accurate [it will be noted that a similar technique was

used by Karman in deriving the drag law (3.59)]. The drag law thus

transformed will have the form

S6" C, -11-0p Ita tl, (1) , = -7 . (3.175)

SHere I(i) is given by Equation (3.54), and w and 8, involved in the

expression (3.54), are given by the ratios (3.48) or (3.49).

N Substituting the expressions for the momentum loss thickness

(3.175) in Equation (3.174), we obtain a relation between z and the

friction parameter •:

Sz= CwC2 xp [XpI(1). (3.176)

As seen from Equations (3.176), the dependence of the friction

parameter 4 on z is essentially logarithmic, and this enables us

to limit ourselves to an approximate determination of the function

z(x). As a result, in calculating the parameter H*, one can use

its expression applicable to a flat plate (3 .55 ), which is fully

justified in the approximate approach taken here.

The expression for the function A (3.373), upon substitution

of the drag law (3.175) in it, becomes

158
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S7

6 (3.177)

The dependence of the functions PA and A on the friction

parameter C, and consequently, through Equation (3.176), on the

unknown function z reduces the proolem of determining this function
to integration of a very complicated nonlinear equation (3.174).

"Exact integration of this equation is very difficult, and, as will

be seen below, is not necessary. A simplification may be achieved

due to the fact that the functions H* and A depend on the friction
* . parameter r very slightly. This permits us to approximately deter-

mine H* and A for the values of the parameter C calculated using

the formulas for the flat plate (Section 12). Regarding the parameters

$ and w [see Equations (3.48), (3.49)] on which, along with the param-

eter H, H* and A are dependent, they must be computed for each

section of the boundary layer from the local values of the Mach

number Me and the temperature factor Tw/Te. Thus, the functions A

and H* may be considered to be known functions of the longitudinal x

coordinate before we proceed to integrate Equation (3.174).

This approximate method of determining the parameters A and H*,

as shown by estimates given below, will not result in any significant
errors, and the function z(x) is determined from Equation (3.174).

Let us determine the expression for the parameter A in the case

of flow of an incompressible fluid over a flat plate under isothermal
conditions. Noting that in this case I(1) 1, and using the drag
Formula (3.80), we obtain from (3.177)

-
A-1 = +- 1+3541o/7,, 1 ,,75Re''. (3.178)

Expression (3.178) implies that, when the Reynolds number changes by

two orders (from 105 to 107), the value of A changes by 6% (from

1.25 to 1.18). In the general case of compressible gas flow in the
presence of heat transfer between the gas and the surface, the
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parameter A will not vary too significantly under real conditions.

The results of calculating the parameter H* from Formula (3.55)
for the case of air flow over a flat plate for

M. 1,69, T7/T, 1,66 and M, 2,27, T/T, = 2,15

are given in Figure 27. The same figure includes the experimental

points obtained by Pappas for the same flow conditions. As seen in

Figure 27, the parameter H* hardly depends on the Reynolds number,

and, consequently, hardly depends on the friction parameter r. The

fact that H* hardly depends on the parameter ý has been amply verified

by experiment also in the case of flow of an incompressible fluid

over a plate. Thus, measurements done by Schultz-Grunow [57] and

Hama [58] on flat plates indicate that, when The parameter C. changes

from 18 to 30, the parameter H* changes from 1.5 to 1.25. The

results of applying Formula (3.55) to a flow of an incompressible

fluid are also in satisfactory agreement with the experimental data.

The results of this analysis of the behavior of H* and A can be

written in the form

If* [M., L. 1:1(. L e

J[Mr., (M, rw, R )];l (3-179)T M, r"" , • e

A4 [. (M, ,L, R.'

In these formulas, the subscript "pl" indicates that the quantity in

question should be determined, using formulas obtained for flow over

a flat plate.

If we use the approximate method of determining the parameters

H* and A, as expressed in Equations (3.179), then the problem of

finding z(x) reduces to integration of the following linear differ-

ential equation of first order with variable coefficients:
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S•~~~+ P(x)z Z- () S(3.180)

where

J,(x)~= A iW).•. 4 O Q(x)- ,. ~(3.181)

Integrating (3.180), we obtain

XV

z-Oxpi P (x) dx]{\~~xtP.~rd+} (3.182)

t
Here x is the coordinate specifying the location of the point where

the laminar boundary layer changes into the turbulent layer. The

constant of integration C follows, as usual, from the continuity

condition for the momentum loss thickness 6*5 at the transition

point. As a result, we obtain

z exp-- P P(s)dxx
xo 5+(3.183)

x Q --) xi) P ( s) d s] d -- + N Vt' , .6 ;" ,

where the parameters % and 6t must be found from the theory of the

"laminar boundary layer.

If the laminar region is absent (for xt- 0 6*t* - 0), then

Equation (3.183) is somewhat simpler and becomes

x exp [ P@)dx}Sq(x)oxp P(x)dx]dx. (3.1814)

The integrals appearing in Equations (3.183) and (3.184) can be
evaluated using either numerical or graphic methods.

For flow over a flat plate at zero angle of attack (dU/dx *0,
v = 0), Equation (3.184), in view of Equations (3.181) and (3.177),
becomes

•:l~~~~~~ P~u A ,d pU, i+•(31

Sa TH(3.185)
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For an incompressible fluid, if the expression in (3.178) is used for

A, the integral on the right-hand side of Equation (3.185) is easily

evaluated, whereupon we obtain

z = p.U.x ( + 0,692 Re"'). (3.186)

When the Reynolds number (Re ) varies from 105 to 10 the expression

in parentheses in Equation (3.186) varies from 1.27 to 1.20. Conse-

quently, we see that with a sufficient degree of accuracy

so 1t24Ur. ((3.-187)

After the distribution of the parameter z(x) over the surface

of a body is found from Equation (3.183) (of (3.184, Formula (3.176)

can be used to determine the dependence of the friction parameter C

on the longitudinal coordinate, and then Equation (3.8) can be used

to yield the friction coefficient cf(x). However, a direct use .of

Equation (3.176) is inconvenient because it involves the solution of

a logarithmic equation. In order to simplify the calculation of

friction, we shall write expression in (3.176) in a different form.

Taking the logarithm of Equation (3.176), and passing from 4
to c0f with the help of Equation (3.8), we obtain

i'VlcJ~)IIc~ gc ~ s C'o u lgC,.

Upon performing simple calculations and introducing

K I o-)'V0), (3.188)

we obtain

C3±g ;~ (3.189)

The constant C3 can be determined from the condition that Formula

(3.189) coincide with Karman's Formula (3.59) for a flat plate in an
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incompressible fluid. In view of Equation (3.187), upon comparing

Equation (3.189) with Equation (3.59), we find that C = 0.30.
3

Equation (3.189) can be reduced to an equation with one parameter.

rividing both sides of this equation by two and then adding lg(0.121 K)

to both sides, we get

N (310

where

(3.191)

Solving Equation (3.191) for Cf, we get

SPo121K \S (3.192)

The function N can be easily found from Equation (3.190) in terms of

the known right hand side of this equation with the help of a table of

decimal logarithms.

An even greater simplification of the computational procedure can

be achieved by replacing the left-hand side of Equation (3.190) with

a simpler approximate expression. As shown in the calculations,

when N ranges from 1 to 4 (which in flow over a flat plate corresponds

to a variation of the Reynolds, Mach numbers and the temperature
5Sfactor within the ranges: 105 < Rex 1 108; 0 < Me . 10; 0.1 < Tw/Tr <)

the left hand side of Equation (3.190) can be written with a

sufficient degree of accuracy in the form

N + IgN - 0,15+i,21. (3.193)

The maximum error made in such approximation is 5% for N = 1. On the

average, however, the error varies from 2 to 1%.

Using Equation (3.193), after simple calculations, we obtain

instead of (3.192) the following expression for the friction coeffi-

ient:
FTD-HC-23-723-71 163
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0,1~45K
Ig Of•i2) (3.194)

Closing this presentation of the computational procedure, we

note that one of the functions of N, which determines friction, is

related to z in an almost logarithmic fashion. This fact justifies

the approximate method of determining z on the basis of linearization

of the integral momentum relation that was used here.

In closing, we shall briefly list the basic steps of the calcula-

tion using the method presented above.

1. Given the parameters of the external flow [M (x) and T (W)]

and the conditions at the wall (T ), Formulas (3.48) and (3.49) are
w

used to determine 8(x) and w(x). The recovery factor r in Formulas

(3,-9) should be taken as equal to 0.89.

2. Given 8(x) and w(x) and the local Reynolds number Re x

UepexX/Ie, Formula (3.85) is used to find the local friction coeffi-

cient at the plate cf pl, and Formula (3.8) - to find the friction

parameter •p1 (x). We determine the functions I(1) [Equation (3.54)]

and K(x) [Formula (3.79)] which are needed later. The density ratio

Ow/pe is found from Equation (3.50), the viscosity 1A - from Equation

(3.61).

3. From V(x), w(x) and pZ (x) we determine H*(x) and A(x) using
Formulas (3.55) and (3.177).

4. Formulas (3.181) are used to calculate the coefficients

P(x) and Q(x). Here Ue (x), U'e (x), r (X) and r'(x) must be known.

5. From Equation (3.163) [or (3.184) if the laminar and buffer

zones are absent from the boundary layer], we determine the function
z(x). The integrals in Equation (3.183) (or in Equation [3.184)3
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are found using numerical or graphic methods.

6. Formula (3.194) is used to determine the distribution of the

local friction coefficient cf(x) over the surface of a body. If the
friction coefficient is determined using the more accurate Formula

(3.192), then it is necessary to first determine the function N(x)

from Equation (3.190) in terms of its known right-hand side. Equation
%3.190) is solved using the tables of decimal logarithms.

The following data must be given initially: U (XW, U' (X),

r (X), r' (x), Te (x) and Tw. Instead of Ue (x) and U'e (x), we may be
given the Mach number at the outer boundary of the boundary layer,

Me(x), and its derivative with respect t'o the longitudinal coordinate,
'e (x), which are related to the former by Equation (2.83).

From the distribution cf(x) thus found, one can determine the
friction coefficient using the parameters of the oncoming flow:

>P

C1 Y4= __ --a/(3.195)

Method of successive approximations. On the basis of the same
initial assumptions as in the preceding method, i.e., considering

only flow with moderate longitudinal pressure gradients, one can
propose the following method of calculation based on a simple trans-

formation of the integral momentum relation to a form permitting a
determination of friction by the method of successive approximations.

The first such transformation was used by K. K. Fedyayevskiy and A.

S. Oinevskiy [59] to calculate friction in a turbulent boundary layer
z J. of an incompressible fluid, and then applied by Yu. V. Lapin to cal-

culate friction in a compressible gas C60].

S. Let us turn to the momentum Equation (3.170). Introducing in
it the new variable

S0-1•.40"°, •, /-.(3-196),,

P rD-Hc-23-723-71 165

A ,A I A AA*1],



we reduce it to the form

- = - u. ((3.197)

Integrating Equation (3.197) and passing from 6 back to 6**, we obtain

P e-ta l -p- Udx • -- ptUe6 ). (3.198)

* where the subscript t signifies that the parameters refer to the

point where the laminar layer transfers into the turbulent layer,

where 6 is determined using the theory of the laminar layer.
t

Substituting now the expression for the momentum loss thickness

(3.175) in the left-hand side of (3.198), we obtain

C K' exIp I Xl (1)] v " ( - -PtL,,Ietb). + (3.199)

Xt

Taking the logarithm of (3.199), and passing from 4 to c f with the

aid of (3.8), we obtain after simple rearrangements

, V3,+ E, (3.200)

where K is given by Equation (3.79), and the function E involving

the unknown friction coefficient Cf has the form

VI

ji -" l ig e.•0 "' ' I -puo, p.o,1.','•; ]) (3.2o01)

The value of the constant C3 must be taken the same as in the pre-

ceding method, t.e., (3 a 0.3. Having this in mind, it is easy to

obtain from Equation (3.200) the following expression for the friction
coefficient:

In the case where there are no laminar and buffer zones in the
boundary layer (x1 * 0, 6t 0), the expression for the function E
simplifies to
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iX
? ,g(-- - IJ,Idx). (3.203)

OW

The exponent ý1, given by the second of Equations (3.196), involves
the parameter 1l* =6 /6 . This parametee' can be calculated, just

as in the preceding method, using Formula (3.55).

Equation (3.202) enables us to use the method of successive

approximations in calculating friction. As the zero-order approxima-

tion for the friction coefficient cf, it is natural to take the value

of this coefficient for a flat plate, i.e., cf = df p2. Given the

parameters at the outer boundary of the boundary layer, cfp can

be computed by a method presented in Section 12. Upon finding

(0) (x) by means of Equationc W.(x, one can successively find: 4 (0) b en fEuto

(3.8), H using Equation (3.55), a x) by means of Equation

(3.196), E0 (x) from the relation (3.201) (or (3.203)], Cf (x) from

the expression (3.202), etc.

The fact that the unknown function cf occurs on the right-hand
•aide of Equation (3.203) in the integrand and under the sign of the
logarithm guarantees the normal fast convergence of the iterative

In conclusion, we note that, as was shown in the calculations,
both of the methods of turbulent boundary layer calculations, presented
in thits section (the imethod based on a linearization of the integral

momentum relation, and the method of successive approximations) lead
"to similar results. Attempts to use these methods for calculating

the friction coefficient in pre-separation flow regions have shown
that, in those cases, the friction coefficients thus obtained are

much too high.
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S 18. Turbulent Boundary Layer on a Sphere

Among bodies with various shapes of their nose section, bodies

with a spherical surface have attracted the greatest interest among

engineers and researchers. This interest is due to the wide use of

blunt bodies in the construction of various types of aircraft. One
of the main advantages that blunt bodies have to offer, compared to
bodies of a sharp profile, is the fact that the specific thermal

fluxes transferred to blunt bodies are much smaller than those trans-
ferred to bodies of sharp profile. For a laminar flow in the boundary
I&ax' ia the neighborhood of the front stagnation point, the therw'tl

flux to the wall turns out be be inversely proportional to the square
root of the radius of curvature: ., -- 'I'.

At the present time, the problem of Nlow In the laminar boundary

layer In the neighborhood or the front atagnation point of blunt

bodies at Jupersonlc velocities has been thoroughly investigated
both theoretically and experimentally.

Much less research has been dqno In the area or turbuloat flows

over blunt bodie- at supersonic veloiltie-. This is due to the ftat

that$ at the front 3tagrtion point and In itA 4M.#41to ~brod
the flow In the hou•dary layert In view or the orine of the

t~ub~eno numbers� .il ths netg on# misar. It tho Id.lftm Ch•raetr

of tho rlow 14s al"o pkwserved ratNer ýAl~ns tho bod, thcon tho te~
* flux attains a mxinmu at tht Cront At4agnatlon point. The availabIt

oxplerm•mnta data, howfaver-u, ohov teht tho ltanr rotr roulfW
in the boundary layor on blunt bo.die 40eA not always tend vory

Car. In Prticular, tile oxp'eriftentAl da4t~t 0btiftd by Stsotn0 (611

indicato that It It p i blo rot, the iný§r I"Or to P441 Into A

tQ~ulntlayol, ih the nibr ord of h' '40111 Polot (l1ine) tgofle
pOint (linO) 10 defined A4 the P01int 011h#) at Uhith th# Vie!lttY 9t
tho outor boundAry or the bounidary layor b046#0 eqUal to tho 1000l

the neiothbomwOd or the dsonic point (line). Thi ~oae
explalfs %thy thorv Irs PArtIOUIAP 111tvtOt 1n turbulent boutvdary

layers on blut~t bodlo3.



Among the wide class of blunt-nosed •odies, the flow pattern

near spherical bodies has been studied to the greatest extent. A

diagram of flow near a sphere Is shown in Figure 45. In a super:;onic

flow over a spherical body, a
N separated shock wave forms In front

Shock of the body. The stream upon pass-

*e ing through the direct shack w4ve In
I Stagnation the neighborhood or the front st••-•Point.

- -�"¥ nation point is decelerated to zerc)

, veloity, and then accelerted near

Sonic reaching the local vIQcjIy

Ior Sound at a certain l:e (sonic
line)~. Aa shown by ezperim~itt AnM

Figure 45 theory, thbe sonIc Uneqqt lies ncr h

pol'nt havinV th# Anuliar endtn

4 mthortlcl ýin ticltion or the nlou tiar the rroht it-

tbon point ot o aphwtv vao, in pzkrtloular, dpne by WX Ting-YI 4Md
atiger C6110 4Md &n4 Optri1eWttal s-tudy iw- *dote. us foroelktn vt4d

14 th# ,4 4r~ in timh~ Attt-f adife t'rieer
~--" '..~~dusty borv*ient oM -the thltta 1lwattbt rs

ttsski thonr cist ofma a ho 4Odp4a t ýMc' t~"-

thg ~ ~ ~ tj Pýtftf ri'U4 9 AOb



Figure 46 gives the results of the calculation of 2R uin

Equations (3.204) and (3.205). The same figure contains the experi-
mental data obtained by Korobkin and Gruenewald. One must admit that

* the agreement between theory and experiment is good.

Figure 4T implies that) with an increase of the Mach number X,

the paramecter ,L(f)tends asymptotically to a certain limit which

depends o~n the adiabatic exponent y.

-71 -Theory_

Tuia colordinate 0, ia degrees
Pigure 45 Figure 47

it should U# noti2A that for N 4 one can calculate the Value4
of ~~Swith high accuracy using the corrected Niewton's Formula (64).

Ini this caue, the velocity gradient at the stagnation point is given."
bythe dxpression

Por Our purposes, we aro interoated. nnt Onily in the0 Velocity
grQ!d1Vnt 4t the tront stagnhation point, but also In th. variation of

2

mntAl data do the velocity distribution along. a sphere, obtained '1

by I9ortvbkin And Uruenewaid tar tho Kith nutben# or thtonoigfo
ft -YWIhg FN4PA 1.fl to L.87 (Piturd *6) Itdatte that the dependence

oF the volocity don the longitudinal cooNonae is4 ciot* to linea4r:
%)'~Tevlct r~e~aoe ~ 'Fe fteshr turnsd



out to be very close to the value of this gradient at the stagnation
point. According to an estimation by Sibulkin [65] the difference
between the velocity gradients at the front stagnation point and at
the sonic point does not exceed 3% (for y = 1.4). All tle data
available enableus to draw a conclusion that the velocity distribu-
tion along the surface of a sphere (0 < 0 < 900) is described well

41 by the linear relation

The value of (dU e/dx) can be determined either using Formula (3.204)
or the plot in Figure 47, or using Formula (3.206) if the Mach

number Y > 4.

Calculation of skin friction on a sphere. Now we proceed to
calculate the friction distribution along the surface of a sphere.
For this purpose, we shall use a method based on the linearization of
the momentum equation (Section 17), first making some preliminary
simplifying assumptions regarding the behavior of the parameter H*
and the function A. Thus we shall assume that both of these quantities
are constant. An inspection of Equations (3.55) and (3.173) will
provide a justification for this assumption. In fact, as implied by
the results of the analysis in the preceding section, H* and A
hardly depend on the friction parameter . Therefore, one can expect
that - if the compressibility parameter 8 and the heat transfer
parameter w [see Equations (3.48) or (3.49)] change little along the
surface - then also the functions H* and A will change very little.
The comprcssibility parameter ý in the case of a flow near a sphere
will be small, since the Mach numbers at the outer edge of the
boundary layer will not exceed 1.5 - 2. In this connection we shall
encounter the experimental fact, already mentioned above, according
to which the Mach number Me attains a value of unity at the point
with the angular coordinate 0 = 450. Consequently, the effect of the

,. compressibiliti parameter on H* and A will be insignificant. As far
as the heat tvansfer parameter w is concerned, its value may turn out
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tc-be~ ;uite large. However,_if the temperature .01 the wall is

constant, then the vzariation of this parameter along the surface of
"the spinere will bt- insignificant, since the temperature at the outer

-edge oI" the boundpry layer near the sphere changes very little. Thus,
we have every reason to crinsider i1N and .4 to be constant in the case

of a flow over a sphere. -If, in addition,~ we assume approximately

that rw(x) %x,: then tho coeff~icients of Equation (3.180), P(x)
and Q(x) given by Equatiou (3.l8l)-:become -

P~~~~~ ~ =-A(. ') z X (321

Substituting the values of these coefficients in the expression for

the function z, (3.183), we find upqný-Integration

tA(2-+ 1) + 2 1JJ . (3.208')
+ Ne*Uwzj6'. (3.2

If the laminar and transition regions are absent from the- botndai'y

layer, (x,. =0, Ue 0), then Equation (3.208) becomes somewhat

* simplified, namely

P4.1 (3.209)A (2 + Hf) +2L

Having the function z(x), it is easy to calculate the distribu-

tion of the skin friction coefficient cf(x), using Formulas (3.192)

or (3.1914) of the preceding section.

For a fully tu,'oulent boundary layer upon a substitution of

Equation (3.209) in Equation (3.19J4), one can obtain the following

relation for the local friction coefficient

(Ig W,~~I Rex (4~it~ A [A (2 + 1*) ±21-1)(3] 10

where

P P X

Re,, (3.211)
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and K, H*, and A are given by Equations (3.188), (3.55), (3.177),

respectively.

For convenience in calculations, Figure 48 gives a plot of the

expression A/A(2 + H*) + 2 versus the temperature factor Tw/Te for
the Mach numbers Me = 0; 2. The character and the limits of the

variation of this expression confirm the correctness of the assumption

about constant A and H*. it should be noted that expression

A!A(2 + H*)-t 2 depends not only on the parameters Tw/Te and Me, but

also on the Reynolds number. However, this dependence turns out to

be.extremely weak, and for this reason the plots given in Figure 48

(they were constructed for Re = 107; r = 0.89) can be used with

great accuracy..within a wide range of the Reynolds numbers (• from
5 910 to 109).

Figures 49 and 50 give the

results of calculating the distri-
' - - -. butions of certain parameters and

local friction coefficients over

the surface of a sphere for various
-flow conditions(28

. "- The calculations whose results
7 .Figure 48. are given in Figure 49 were done for

a flow of air of Mach number M. 3

at the altitude 20 km (according to 'the standard atmosphere) over a

sphere of diameter d = 2 m. The surface of the sphere was assumed to
bE thermally insulated, The figure gives, in particular, the distri-

bution of the Mach numbers Me. and the Reynolds numbers Rex [see

Formula (3..211)]-Jat the outer edge-of the boundary layer. The

presence of a maximum is characteristic of the variation of the

Reynolds number. The maximum is due to the fact that, within the

initial segment, U'-he increase of the longitudinal coordinate x is

the dominant factor, which accounts for the rise of the Reynolds

number. Within the final segment, the gas density p, which sharply

Footnote (28) appears on page 181.
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Figure 149 Figure 50

it decreases as a result of a isentropic expansion of flow along the
sufc fteshri uha factor. Figure 149 also gives the

S~distributions of the local friction coefficients over the surface
of' a sphere, cf [see Formula (3.210)] and cf• [see Formula (3.195)].

S~The same figure also contains the plot of the friction coefficient
cf p•,. calculated using the flat plate formula.s for the local values
of the Mach] and Reynolds numbers, Me and Rex, at the outer edge of

the boundary layer.

Figure 50 gives the analogous results obtained for flow of Mach
number M• = 11 at the altitude 25 km for the temperature factor

aTsphee of = 37Te0 is the stagnation temperature) in a flow over

a sher ofdiameter d = 1.07 m.

Figures 419 and 50 show that, in both cases of a flow over a
sphere, the local friction coefficient cf®, determined from the
parameters of the oncoming flow [see Formula (3.195)], is largest
in the region of flow adjacent~to the-sonic line.

Calculation of heat transfer for a sphere. Upon a determination
S of the friction coefficient accordj.ng to the: method described above

4,' -
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one can find, using the Reynolds similitude (3.144), the local heat
transfer coefficient (Stanton number). The expression for the local

thermal flux, in view of the Reynolds similitude, becomes

qw CPA 1 (3.1145)

Here S(l) and r are the Reynolds similitude parameter and the

recovery factor, respectively. The values of these coefficients can

be determined from Formulas (3.150) and (3.159). Using these

formulas and Equation (3.207), we reduce the expression for the heat

flux on a sphere to the form

qw c P-vC p.P,, (h. ( + h). .(3.212)

Along with the method described above, there are other approxi-

mate methods for calculating heat transfer on spherical surfaces.

The results of some of them are given below.

Van Driest [66] using the power-law velocity profile with the

exponent 1/7, obtained the following expression for the local heat

transfer coefficient:

I~ /,d fPooU d \V) / P.\)%/j.±e a

\p.r P . (3.213)

Here the heat flux was given by

(3.214)

It should be noted that Formula (3.213) was obtained under the

assumption that the turbulent boundary layer begins at the front

stagnation point.

Arthur and Willjams [67], using the Van Driest Formula (3.213),

the power-law dependence of viscosity on temperature, p 'v T0 .76, and

the assumption about the isentropic expansion of the gas along the

surface of the sphere, have found that in this case the maximum value
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of the heat transfer coefficient (c )max is achieved at the point

x/d = 0.322, which corresponds to the angular coordinate O= 370.

The maximum heat flux for Pr = 0.75 turns out to be

)x 'X UZ I- ) (3.215)

x ('d ) p.U. (Hr - a)

where the subscript s denotes parameters at the front stagnation point.

A relation equivalent to (3.213) was obtained by Sibulkin(29)

who investigated heat transfer at the sonic point. Just like Van

Driest, Sibulkin used a power-law velocity profile. In calculating

friction•, he made use of the Blasius power-law formula, widely used

in the theory of the turbulent boundary layer of an incompressible

fluid, in which the flow parameters were calculated using Eckert's
(30)arbitrary temperature method

In the conclusion of this section, we shall give a formula for

calculating turbulent heat transfer in the neighborhood of the

stagnation point of an axially symmetric body, proposed by V. S.

Avduyevskiy [68]:
0,2

qw. 3600gcpp,,x 0,040( )-0.x

iT -0•) ( )kcal (3.216)
m hr

Formula (3.216) was obtained by solving the integral energy relation

with the aid of the experimental relation between the heat flux and

the local characteristics of the boundary layer, established for a

flat plate. In deriving Formula (3.216), it was aasumed that pe(x)

const.

Figures 51 and 52 give the results of calculating the heat

transfer coefficients c h and c h on the surface of a sphere for the

flow conditions indicated in the explanations of Figures 49 and 50,

Footnotes (29) and (30) appear on page 181.

FTD-HC-23-723-71 176



4- 1(3.21 ¶h-- -T -7
40

/ -Fcr.uFormula

(3.213)

14yv
07~ .~ 4560750 07' 034675

Figure 51 Figure 52

respectively. The local heat transfer coefficient Ch, determined

using the parameters on the outer edge of the boundary layer [see

Formula (3.143)], was computed from Equation (3.159). The local

heat transfer coefficient Cho was determined from the relation

Pe U,SCh-1 =Ch p-. U--M

Figures 51 and 52 also give the distributions of the local heat

transfer coefficients Cho, obtained using the Van Driest Formula
(3.213). As can be seen in these figures, both methods lead

to similar results. The maximum heat transfer occurs near the sonic

line.
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FOOTNOTES

Footnote (1) on page 76. A detailed analysis of various
methods used in turbulent boundary
layer calculations for the case of a
flat plate can be found in:
Spalding, D. B., S. W. Chi. The
Drag of a Compressible Turbulent
Boundary Layer on a Smooth Flat Plate
with and without Heat Transfer,
Journ. of Fluid Mechan., Vol. 18,
Part 1, 1964, pp. 117-143; Russian
translation: Mekhanika, No. 6 (88),
Foreign Literature Press (IL), 1964.

Footnote (2) on page 80. See footnote on foreign page 78.

Footnote (3) on page 80. For a footnote on papers by Wilson
and Van Driest, see [5,6,7] on page 182.

Footnote (4) on page 80. See footnote on foreign page 80.

Footnote (5) on page 81. See [11] on page 182.

Footnote (6) on page 99. This question will be discussed in
detail in Section 13.

Footnote (7) on page 99. For large supersonic velocities, it may
be necessary to consider the interaction
of the boundary layer with the outer
nonviscous flow. Due to this inter-
action, the magnitude of the pressure,
and consequently, also the velocity
on the outer boundary of the boundary
layer, may noticeably differ from the
values of these parameters at infinity.
For more details, see, for example,
Heis, W. 1., R. F. Probstain. "Theory
of Hypersonic Flow", IL, Moscow, 1962.
In the present chapter, when discussing
flows at relatively small supersonic
velocities, the viscous interaction
does not have to be taken into account.

Footnote (8) on page 103. A detailed Justification of Equations
(3.30) and (3.31), as well as a
discusaion of the questions involved
in determining the thickness of the
laminar sublayer and questions related
to the effect of various factors on the
sublayer parameters, will be given in
Section 13.
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Footnote (9) on page 104. The function t generally depends on
two variables x and u, since p = p
(x,u). However, in connection with
the approximate calculation given
below, where we assume p Q p(U),

€ $ (ii).

Footnote (10) on page 107. For a detailed discussion of the
recovery factor in the turbulent
boundary layer, see Section 15.

Footnote (11) on page 109. It will be recalled that a similar
technique was used when deriving the
well-known Karman formula for the
friction coefficient on a flat plate
in an incompressible fluid. See, for
example, Sovremennoye sostoyanlye
gidroaerodinamiki vyazkoy zhidkosti
(Present State of the Hydroaerody-
namics of a Viscous Fluid), Vol. II,
edited by S. Gol'dshteyn, IL, Moscow,
1948.

Footnote (12) on page 113. See [29] on the paper L. V. Kozlov
on page 183.

Footnote (13) on page123. From Equations (3.104) and (3.30) it
is easy to obtain the relation Ou

which some author• used as the reason
for considering a as the critical
Reynolds number (Rent) that determines

the transition from laminar flow in
the sublayer to turbu.ent flow in the
core.

Footnote (14) on page 1?3. See [5] on page 182.

Footnote (15) on page 126. Here it is proper to note that the
estimates of the effect of compressi-
bility and heat transfer, on the
coordinate n%, presented here, are not
strictly justif'ied, since the vnlues
of the coordinates ni in the paper by

Czarnecki and Monta have been obtained
by joining the velocity prot'lle (3.07)
in the laminar sublayer to the logar-
ithmic velocity profile In an Incom-
pressible fluid. This fact does not
permit us to draw any numerical con-
olusions on the basis of this type of
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analysis. However, this analysis is
undoubtedly useful in revealing
tendencies in the effect that compres-
sibility and heat transfer have on the
thickness of the laminar sublayer. Of
course, the numerical dependence of
the thickness of the laminar sublayer
(nI on the Mach number and the

temperature factor can at the present
time be studied only experimentally.

Footnote (16) on page 126. See [11] on page 182.

Footnote (17) on page 126. See [5] on page 182.

Footnote (18) on page 126. Regardless of the fact that the use of
Van Driest's velocity profile is more
natural than that of the logarithmic
velocity profile in an incompressible
fluid, the comment made earlier with
respect to Figure 28 is valid also
in this case.

Footnote (19) on page 127. See the paper by Spalding and Chi,
which was already cited in this
chapter.

Footnote (20) on page 134. See a paper by Van Driest: [4].

Footnote (21) on page 139. Here it is proper to note that the
deviation of the Prandtl number from
unity leads - within the framework of
the double-layer model of the turbulent
boundary layer - to a situation in
which the dynamic and thermal thick-
nesses of the laminar sublayer turn
out to be different. If one takes
this discrepancy strictly into account,
this will lead to substantially more
complicated calculations of heat
transfer, and is not necessary if the
Prandtl number is not too different
from unity. In this connection, it
will be recalled that calculation of
heat transfer within the framework of
the double-layer Prandtl model generally
leads to natisfactory results only if
the Prandtl number is close to inity.
If the Prandtl number in substantially
different from unity, better results
are obtained by usino the more complex
three-layer Karman model. For more
details about this and also about a
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calculation of heat transfer for very
large Prandtl numbers, see Loytsyanskiy,
L. G., "Semi-empirical Theories of the
Interaction of the Processes of
Molecular and Molar Exchange in a
Turbulent Flow of a Fluid", Trudy
Vsesoyuznogo S'yezda po teoricheskoy
i prikladnoy mekhanike, 27. I - 3. I!
1960, Academy of Sciences of the USSR,
Moscow-Leningrad, 1962.

Footnote (22) on page 139. Apparently, the first expression for
the recovery factor, similar to
expression (3.149), was obtained by
M. F. Shirokov in a paper published
in "Zhurnal Tekhnicheskoy Fiziki",
Vol. III, No. 12, 1936. See also a
monograph by the same author:
"Fizicheskiye Osnovy Gazodinamiki"
(Physical Foundations of Gas Dynamics),
Fizmatgiz, Moscow, 1958.

Footnote (23) on page 142. See a paper by this author that was
mentioned in Section 12.

Footnote (24) on page 147. See the earlier noted paper of 1955.
(Footnote on foreign page 153).

Footnote (25) on page 153. See [12] of Coles' paper on page
182.

Footnote (26) on page 153. For more details on this subject zee,
for example, Rotta, I. K., Turbulentnyi
pogranichnyy sloy v neszhimayemoy
zhidkosti (Turbulent Boundary Layer in
an Incompressible Fluid), "Sudostroyeniye",
Leningrad, 1967.

Footnote (27) on page 154. See the paper by V. S. Avdureyskty
which was already quoted In this
chapter (Q151 on page 18?).

Footnote (28) on page 173. Calculations woevc done at the request

of the author 0. V. Semenova.

Footnote (29) on page 176. See [65) on Daae 185.

Footnote (30) on page 176. See [55] on page 184.
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CHAPTER IV

TURBULENT BOUNDARY LAYER IN A DISSOCIATING GAS

6 19. Certain Comments Regarding the Thermodynamic

Properties of' the Air at High Temiperaturesti

The increase of the velocities of aircraft from low subsonic to

moderate supersonic velocities has made it necessary to consider the

deptn -,e of the density of air and tranaport coefficients (visco-
sity and heat tranafer) on the temperature when dealing with such

velocities. The specific heat capacity of the air increases with

temperature due to the excitation o1 the vibrational degrees of free-

dom (Figure 53). However, if the temperature gradient in the boundary

layer is not very high, then in approximato calcul&tions the heat
capacity or the air may be considered ounstant, and equal. to a value

corresponding to certain average temperature of the flow.

The methods used in turbulent boundary layer calculations ror

bodies of various shapes were discussed in the preceding chapter

based on the assumption tilat the heat capatity or the gas is cohstant.

Pootnote (1) eppears on page 269.
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A further increase of the

. .. velocities of aircraft is accompanied

I 'by such a high Increase of the gas

- . temperature that, along with the

/ Tfact that the density and transport

coeffictents are variable, It may

also become necessary to consider

Figure 53 the dependence of the heat capacity

on the temperature. Here one must

keep in mind that it ia not the

absolute value of the temperature, but the temperature gradient in

the boundary layer (in other words, the difference between the maximum

and minimum temperature) that is of basic importance. The flow of a

gas with variable heat capacity can be analyzed toth by generalizing

the iaethods discussed in the preceding chapter (stich a generalization

in many cases reduces formally to replacing the temperature with the

enthalpy) and by applying methods that will be presented in this

chapter.

A transition to hypersonic velocities causes such an enormous

increO3o in the toemperature of the gas that thermochemical proco*•eos

begin to ocour in it. They include the dissociation of the sas moie-

cu1es, ionization" of -the atoms, formattion Of txideordiiot.
Some coooept of the eOfeOt. of

those proce•aos on the "OrrotI•VOa

- J ,heat Capacity of the i n4
rille4uilibriua*s Ay be obtained fr*.o

Pigie 5M (1)J which Siveso the

I -i -plots of the htat Oapazity C

Versus ttoper~ature for variout
;re~urs(~etectvz~heat ea~pa-

4- city is usually defintsd as tne
heat capacityt tddch, torether Wi~th

W CM S0 the or*dintary heat coipacity, In-
cluocs the thedrsai effects of thw

Figure b'4 throhnclptroaaea* iM a gAs).

PTD- 1S?



Figure 55 has been reprinted from the paper by Ye. V. Stupochenko
et al., which was quoted above. The figure gives the molar concen-

trations of the molecular and atomic components of the air and elec-

trons, computed for the conditions of' thermodynamic equilibrium, as
functions of the temperature for three values of pressure p - 0.001;

1 and 1000 atm. As seen in Figure 55,at high temperatures the air is

a multicomponent mixture, consisting of the molecules of oxygen 02,
nitrogen N2, nitrogen oxide NO, atomic oxygen 0, nitrogen N, argon Ar,,

and electrons e-. In addition
to those components, the mixture

4 contains positively charged ions

of oxygen 0 +, nitrogen N +, and

#4 nitrogen oxide NO+ (in Figure 55
*14 the concentrations of these

components are not given).

&W The argon and nit rogen

4W oxide content does not exceed 11
4 within a wide temperature and

___preasure range, and for this
reason we may neglect the exia-
tence of these components In
approximate calcu~lations.

AW MW MWcaaouiationa of the #quili-
I brium comos~ition of the air show

(23 that, dud to a considerable
difference in the dissociation
onergy ot oxygen and nitrogen
(5.08 OV for 0 nd 9.156 eV for

the diss~ociation of oxygen
to dosent'ally ttrsainated before

CM! MW A nitrogen dissociation begins.
In addition, due to the high

Pigure 55lonliation potentila roir oxygen



and nitrogen (13.62 eV for Oa and 14.55 eV for N), the dissociation

of the oxygen and nitrogen molecules is to a large extent terminated

before the ionization of 0 and N atoms begins.

These features of the flow of chemical reactions in the air at

high temperatures enable us to approximately distinguish temperature

and pressure ranges in each of which a certain reaction is dominant

(Figure 56)(2). The subdivision into regions, given in Figure 56,
permits a consluerable simplIfication of the air flow calculations at
high temperatures.

,, In the present chapter, we

3- hall consider those methods of

Al turbulent boundary layer ealcu-

ol lations that are applicable toIon &1Pj
yingsaccopanyioaý companyine- flows in which the effect of the

-OtMfltcoponent3 components ionization procossea- may be

SB|neglect~ed oee PFiguro 56).

S f0. tlomttta of the Eiitiqu

rwin tht provaeit dordior. U

nttth n Ou tt 1foMtal klfnetlcs 6f

"-[--][-TT1 rtel ari-s+--+- fcsi~ o: c.r.ie• the ineVK,,•_

tho distooiatiolt attlon-a of the basc vleezt of' the air 01y;041

411d nI-t.. .. ). .e .. ... li..t out- .tte tlo.. .. .. tot rial that t li

be rolW tsr4 eesary Ugolo. We 6ht11l al10o deacvlbv a, tu4doi Str 4s

Woily lsoolating gss pruoptsd by Llgmihtll (ýi1, uhtbh~ a

beezoe toidely usd" in various tasfln.tdct at'iiies. We sind11 -vje-
Voe OIO ate to a zode1 or a partially extitcl s Wvle01at4 gt

A trierf lteatteft Or tht kitotIO4 of Or ooeno4(s ae ch-sulca1

Pootrwoo (2) &a4*ow- on~ pace 69
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Definitions. The processes of chemical interaction among the

molecules of a gas mixture are a result of collisions among the

reacting molecules. Depending on systems in which the reactions take
place, they may be of two types: homogeneous and heterogeneous.

Homogeneous reactions are those that occur in a homogeneous

medium (for example, in a mixture of reacting gases or in a solution).

Usually, when we say homogeneous reactions we mean reactions occurring

in finite volumes of gases, solutions, etc. -Moreover, if the gases

participating in a reaction are contained in a vessel, then the rate

of a homogeneous reaction does not depend on the surface area of the

vessel. An example of a homogeneous reaction is the dissociation of

the oxygen and nitrogen molecules and high temperatures.

Heterogeneous reactions are those that occur in an inhomogeneous

medium, at the interface of interanctinrcomponenta which occur in

different phases - for example, solid and gaseous (recombination

reaction* at a catalytic surface), liquid and gaseous, (carbon burnout

at the surrace or the protective film made of certain materials used

for shielding cpacecrafts from heat), etc,. The heterogeneous reac-

tions ai-e also uoually said to include roactlonc occurring In narrow

(as otzared with the volume occupIed by gases) regi•n•, which form

when reacting Cases (not pr*viously mixed) are brou,. t 3,;c. aot..

In tht limiting case when tne Pate of a chemical reaction is infinitely

large aa ccbpdved with the rate of difftuaion (the rate of deiuvery
and rmoval of rfltftatb and products or renetion) such a region may

be considerod to be a surface (reaction frant). An exaWple of such
A reactlo•. #44y be provided by the OxIdation reaction (combustion) of

pasO~utocirbor, when itigh-tozperature- Air flows over a carbon Surface.
In this cqtg, the gaseous darbon which is rormd as a result of a

Sublimatloo se olid carbon diffuses frto the surufae or the waill to

the outer edge of the boundary layer, tow~ard ozygent which diffruses
In the dppdsito diJrtlcti. if the toterat•re in the boundary layer

is suti[ic6ently high, thon the oxidation rate (doabustioo) or ca~rbon
Sill be very large, and the reactlon oe'e (Colustion front) will be

-6.
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so thin, as compared with the thickness of the boundary layer, that

in practice such a reaction may be considered heterogeneous.

A reaction is called endothermic if it involves absorption of
heat (for example, the dissociation of oxygen molecules), and exo-

thermic if it involves release of heat (for example, recombination of

the oxygen atoms).

The law of mass action. Every chemical reaction obeys the law

of constant multiple proportions, and can be generally described by

the following stoichiometric equation:

k' k-I(4.1)

where v' and v" are the stoichiometric coefficients for reactants

(prime), and reaction products (double prime); Ak are the chemical

symbols of the reactants. N is the total number of the chemical

apecieb, and k' and k" are the rate constants of the direct and reverse

reacLions, respeetively, which are functions of temperature.

The law or maes action is the basic relation describing the rate

of a chemical reaction (the rate of formation or disintegration or

species i). According to the law of mass action, the rate of formation

oC a specieu is proportional to tre product of the concentrations of

the roacting dpocieos, whore each concentration in the product is

raised to a power equal to its stoichiometa'ie coefficient. According

to thin law for *.e equation of a chemical reaction (4.1), the rate

of the reaction going from left to right can be given by the

expresation

and the r4ate or the reuction goins rotr. right to left by

(5.3



Here En1 ] gives the number of moles per unit volume of species i.

The derivative d[ni]/dt represents the rate of change of the number

of moles per unit volume of species i as a result of the chemical

reaction. It will be noted that Equations (4.2) and (4.3) were written

for one mole. If a reaction is such that reactants are present on

both sides of'the equation of reaction, then the expressions for the

reaction rates must be written in the form
N

d d[nilN

- -=(V; - VI) ' (T) j[[ k (4.4),

dnIN (4.5)
kz, t

These equations were written for (v" - v1) moles.

The total rate of formation of species i is equal to the differ-

ence between the rates of the forward and reverse reactions:

N Vt

"i ')(v - •V • T) kf'I ,MI k -(; -v;)k *(7') I nt [.i''.(4.6)

In chemical equilibrium, no changes occur in the composition of

a mixture, i.e., the rates of the forward and reverse reactions are

equal (d[n J/dt a 0). Consequently, in this case

•'m. IIg'l'' M .() (4.7)

where K n(T) is an equilibrium constant, and the subscript (e) signi-

fies the equilibrium values of Enk3.

Equation (4.7) is the most general equation that can be used to

determine the composition of the reaction products in chemical

equilibrium. This equation relates the ratio of the kinetic parameters

k' and k" to the equilibrium constant Kn(T), which may be calculated

exactly using thermodynamic and quantum-meohanical methods.
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Equation (4.6) can also be written, in view (4.7), in the for-m
dinil

(4.8

If a number of reactions occur sipultaneously in a system, then
. - in calculating the total rate of formation of species i -- one can

use the principle of independence of individual reactions. Accordin&

to this principle, if a number of reactions occur within a system,
then each of them occurs independently of the rest, and each is subject

to the law of mass action. The total rate of formation of species J

is equal to the sum of the rates of formation of species I in each of

the reactions

(4.k
out,

where a is the number of independent reractions, 3 is tne reaction

number.

For an ideal a3 whose .tate is deoseribed by .he Clapoyi.n

equation, we have

Here pi.is the partial pressure of species 1, R is the univerdal 6a

constant (it tnt)i 13Massure~d in m-108/ad and parets In atow Uien
the 6to constant Is R 82.05 C03 at--.-oiew 1 -4-1

At equilibrium

In them.cal kinetlcs along with the equ~librlum citS.IaLnt

eXpressei In terms rf the number cf .olet tvguation a.T), one ortor.

uses th, eoqullibrium Constant 9, expressed In terms Ot pertial

pressures:



N

k-1 (4.12)

It is easy to see, in view of Equation (4,11), that the equilibrium

constants K and 1% are related as follows
N

&.cK4Rf-l, M,•.i--4) {.(4.13)

The ratio of the number of moles of species i per unit volume
(or of the partial pressure of species i) to the total number of moles
per unit volume (to the total pressure of the mixture) is called the
molar concentration of species i:

-T + 7 (4.14)

Here Ns+ jM is•1 Ithe total number of moles per unit volume, and p is

:,h pressure ofr the (;&S mixture.

The eXpression for the oquilibrium constant in terms ot the
equilibrium molar concentration hMa the Cfom

Similarly, one can introduce the equilibrium constant, expressed
In tes of the equilibrium =aa concentrations:

X11t jjI (4pgr;" (4.1t6)

HLr

Usinagt these relations, It is easy to show tlhat we have the
following relations anong the equilibrium constants:

PTDn1iC-23-72317 1 1



- . - . *.Tp. - *- - - -" ** ** *** -. ***•'!

-r Xdpt9,rfH (MJ,'C-kf . (4.18)>k'-

As seen from Equations (4.15) and (4.16), the equilibrium
constants K anu K are always dimensionlese parameters. As far as

"K and K (Equations (4.7) and (4.12)) are concerned, these equtll-
brium constants are dimensionless only under the eondition that AV a 0.
In order to use any of the above equilibrium constants in the expres-
sion for the rate of a chemical reaction (4.8), it is useful to note
that the expression

7r H i1 ,k-'

is always dimensionless.

Introducing, by analogy with bhe equilibrium conotant, the

quantities

rN

K. X.--*

I++I ' + +: X- A+ " : ':

to ViOW Oit Euatlon (11.19), We obtain tho rollowins equivalent

exoreaaiona tor the rate ot a chemicoal roaation:

( 0 u I-. o n x

•: ~(equatino con tinued Qn next pace)



-(v1 - v.k';) k (i c4; yk (.

N

@o. IV;.
(4.20)

Equilibrium constants. Statistical thermodynamics (5) leads to
the following expression for the equilibrium constant:

K N

where

IRS t-22

is the difference between the energies of the products and the ener-

61e5 or the reaotants at a zero temperature point,w here the reactant

and the reaction products are considered to be In states with unit

concentrations at normal pressure; Q. is the partition function for

a g.a at unit pressure; EO is the onergy of the gas at zero absolute

ueoperaturoe

The partition f'unctilo ror a gao at. unit preature is related to

the total partition tunctloa Q (a basit quantity in stiatisicl

thomodynaznie) by the eiuation

The partition lunction Q is live# by

where is the energy ot a particlo In the Ith atie; is he

•-,iD-tC.-%23 .74),



statistical weight or degeneracy of the energy levels, i.e., the

nuLber of states of a particle with energy levels near e .

According to present-day concepts, the energy of gas molecules

consists of the translational energy c., rotational energy Cr" the

intramolecular vibration energy, i.e., vibrations of atoms and groups

"of atoms in a molecule, evs the electron excitation energy Ce, and

the nuclear excitation energy. For the temperatures occurring in

gasdynamics, the energy of the nuclear excitation may be neglected.
If we assume that the different forms of energy are independent, then

the partition function will be given by the product

Q = QQrQQ (4.25)

The factors on the right-hand side of Equation (4.25) are the

partition functions for the translational, rotational, vibrational,

and electron levels of energy, respectively. In statistical mechanics,

it is shown that for two-atomic molecules these factors are equal to

( ~.2nn '~kh RT

~ h' ~7'(4.26a)
I MAIT I T

A3 h

. r(4.26b)
• : '....": Q ,= l • '} = i e " -) ,(4.26c)

O .- (4.26d)

*.Here mA2 is the mass of the molecule, I is the moment of inertia of

. the molecule, h is Planck's constant, v is the vibrational frequency,
T is thQ characteristic temperature of rotation, Tv is the charac-
teristic vibrational temperature.

The expression for Q2 wa• written for a two-atomic molecule
consisting of identical atoms. For monoatomic molecules that do not
have rotational and vibrational degrees of freedom, the corresponding
partition functions will become equal to unity. The partition func-
tions for the translational and electron degrees of freedom for
monatomic molecules have the same form as Expressions(4.26a) and
(4.26d), except that ue in (4.26a) must be replaced by mA.
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Rate constants of homogeneous reactions. The expressions for

the rate constants of chemical reactions can be obtained either using

the collision theory (Arrhenius theory) [6], or using the theory of

absolute reaction rates [7] (sometimes the theory of absolute reaction

rates is called the activated complex method).

Collision theory, which is a part of formal kinetics, does not

go into the mechanism of collisions, and gives a numerical description

of only the results of an interaction of particles. Arrhenius is the

founder of collision theory. According to Arrhenius, every reaction

goes through an intermediate stage involving the formation of active

molecules, i.e., molec% e, that possess excess energy sufficient to

overcome the energy barrier. In order that an elementary chemical

interaction process may occur, it is necessary that the molecules of

the reactants come close together. Here, regardless of whether the

process involves release or absorption of energy, as a rule, when

molecules approach one another, repulsive forces arise, and a definite

energy is needed to overcome them. As an example, Figure 57 gives a

diagram of the variation of the energy of a reacting system. The

ordinate axis measures the potential energy of the system, and on the

axis of abscissas we plot a coordinate characterizing the relative

spatial distribution of the atoms. Region I refers to the initial

particles, II refers to active particles, III refers to the products

of the reaction. The energy difference between the initial and the

final states of the system is equal to the energy effect of the

reaction. (AEo). Ea is the activation energy, i.e., the minimum value

of the total energy of the

colliding molecules which is
E,-necessary for a reaction to take

place.

The reaction rate constant

! f is directly related to the number
!, I

of collisions of the active mole-

cules. Therefore, its value turns

Figure 57
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out to be proportional to the Boltzmann factor (-Ea/RT). The question

of which collisions should be considered active must be solved experi-

mentally. A comparison of calculations, based on different hypotheses,

with the experimental data showed that for simple molecules, active

collisions are those in which a component of the kinetic energy of

* •relative motion along the line Joining the mass centers exceeds the

actnvation energy. .n this case, we obtain the following expression

for the reaction rate constant(3).

"- )rIIb\))Dx

3 • ( , k ,).

Here rl 2 is the sum of the radii of the colliding particles,

+ -is the reduced mass of the particles, k is the Boltzmann

constant.

The above expression for the reaotion rate constant does not

always lead to results that are in good agreement with experiment,

particularly if complex molecules participate in a reaction. This is
due to the fact that not all active collisions lead to a chemical

transformation. In order to account for this possibility, the expres-

sion for the reaction rate constant must include an additional factor

P which gives the probability that an active collision will result

in a chemical transformation (sometimes P is called a sterno factor).

In this case, the expression for IF becoca,|s

k•Pb(T)oxp(- 1. (4.27)

If all active collisions result in a reactions then H 1 1. In

reactions in which complex molecules participate, the value of P may

l be very small (on the order of 10 8).

ýristead of the Expression (4.27), one most often makes use of

the expression

Footnote (3) appears on page 269.
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k~Z(T)exp(-).(28

which was introduced by Arrhenius. The value of the factor Z(T) that

multiolies the exponent is usually determined experimentally, and for

some of the not too complex reactions, it may be computed on the

basis of the theory of absolute reaction rates(•).

Heterogeneous chemical reactions(5). In chemical kinetics, the

term "heterogeneoual" refers to reactions which occur on the separating

siirfX.ces, i..., on phase boundaries. Depending on the character of

the surface participation in the reaction, the heterogeneous reactions

that are of greatest interest car be of two types.

in one case, the surface ,layi the role of a catalyst for the

reactants exitLing in the gas phuse. here the products of a hetero-

geneous cata~ytic reaction do not contoin the elements of which the

surface is composed, In the course of such a reaction, neither the

properties of the catalyst ror the shape of the catalytic surface

undergo any change. An example of such a redction is provided by the

catalytic recombination of atoms.

In the econd case, the surfacc plays .- active r..le in th-

reaction. An example is the comhustion of n orbon surfaca which •s

submerged in a stream of high-temperature air. In 'he course of such

a reaction, the shape of the surface may change due to the removal

of the combustion products bý the air st ream.

The chemical prccess occurring in heteroger,ous reactions is

localized in a thin (monomolecular) layer Lt the surface. The vo.ume

of the layer is determined by the area of the surface anO the dimen-

sions of the reacting molecules. The monomolecular layer holds on to

the surface as a z-sult of the forces or chemical adsorption, whose

Footnotes (4) and (5) appear on• page 269.
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Ie

nature is similar to the forces of valence bonding (physical, or

Van der Waals, adsorption rarely leads to heterogeneous reactions).

A reaction occurring at a solid surface may be divided into the
following stages: 1) transport of the reactants to the surface,

2) chemical adsorption of the reactants by the surface, 3) chemical

S* reaction between the reactants, adsorbed at the surface or between the

adsorbed species and the species in the gas phase, 4) desorption of

the reaction products from the surface, 5) removal of the reaction

products from the surface.

As an example let us consider the surface reaction of the recom-

bination and dissociation of oxygen. One of the possible mechanisms

of this reaction, bearing the name of Langmuir-Hinshelwood [8], may be

described by the following system of equations:

0 + W -OW, (4.29)

oW+ OW 2o,+w+w. (.4.30)

Equation (4.29) describes the adsorption (forward reaction) ard

desorption (reverse reaction) of the oxygen atom. W denotes the so-
called active portion of the surface, and OW denotes the adsorbed
oxygen atom, i.e., the atom which is chemically bound to the surface.
Equation (4.30) describes a reaction between the neighboring adsorbed
atoms, as a result of which an oxygen molecule is formed and released
(desorbed), and the active segments (W) become free.

Another possible mechanism of the reaction, sometimes called
the Ridil-ll mechanism C81, is described by the equations

O+ %W OW,
So~ + ow =_ o,+wl (11.29)

0+0W~,+W.(14.31)

Equation (4.31) describes a reaction between an adsorbed oxygen atom

and th~e oxygen atom In the gas phase.
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In both first and second cases, the reaction rates depend on the

type of surface and the conditions on it.

In gasdynamic applications it is usually assumed for simplicity

that the adsorption reaction (4.2 9 ) occurs very fast, and thus does

not determine the rate of the entire process as a whole. In this case,

reactions of the type (4. 3 0) and (4. 3 1) will be decisive. Schemati-

cally, both of these reactions can be written in the form

SA_ Aj. (4.32)

where kwi and kwj are the rates of the forward and reverse surface

catalytic reactions. The expression for the rate of formation of

species Ai, provided by formal kinetics, can be written as

where ni and n are the orders of the forward and reverse reactions,

respectively. [Ai~w and [AJ)w are the concentrations of the reactant

and the reaction product at the wall. The dimensionality of the

rates kwi (or kwj) depends on the dimensionality of the concentrations

of the reactant and the reaction product.

Taking into consideration the equilibrium constant

kq

(here the superscript (e) denotes parameters in the state of thermo-

dynamic equilibrium], we write Equation (4.33) in the form

g• --- 6- i / [AAil 1-K A]} (4.5

Under stationary conditions, the rate of formation of a species

is equal to the diffusive flux of the species toward the surface:

FTD-HC-23-723-71 202



* = - ~~kj1{A1j), - Kw[A~jIN). 36

Equation (4.36) may be used as a boundary condition in solving

boundary layer problems involving surface catalytic reactions.

The temperature dependence of the constant kwi is in many cases

well described by the Arrhenius law

f £
mr(11.37)

Here k0i is a constant of the reactant-catalyst system which is under

consideration; Eaw is the activation energy. The ratio of Eaw •o

the universal gas constant R may be viewed as the "characteristic"

temperature Taw of the reactant-catalyst system.

Kinetics of dissociation and recombination reactions in the air.

The air under normal conditions is primarily a mixture of two-atomic

molecules of nitrogen and oxygen.

The fractions of carbon dioxide, water vapor, argon, and other

admixtures are so small that their presence in the air may be neglec-

ted in a majority of practically important cases.

In the temperature range from 2000 to 80000 K9 the three-atomic

species such as 03$ NO2 , and some other multi-atomic nitrogen oxide.,
as well as the ionization process. do not play an important role.

The following reactions are fundamental in the temperature range

-- indicated [93:

Bg,•-. X.. O , •L) . ,

No -1 0 No + N.*~~ 0. 10 1 OiN
N0. No. (4.3N)

NO +- X,:..*N 0 i. X.

Here X stands for the catalyst molecule.
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Out of the six reactions given, the last four, involving nitrogen
oxide NO, play a secondary role as compared with the first two reactions,
because the equilibrium content of nitrogen oxide is usually small
(no greater than 1%). Therefore, in performing approximate calcula-
tions when the basic objective is to obtain integral characteristics

(friction, heat flux), one may in many cases consider only the first

two reactions. It was already noted above that molecular oxygen is

almost completely dissociated (equilibrium dissociation is being con-

sidered) before nitrogen begins to dissociate. This fact permits us

to consider air as a binary mixture of atoms and molecules. It is

only necessary in this case to consider the difference in the

dissociation energies of oxygen and nitrogen.

In nonequilibrium dissociation, the binary model of the air may

in certain cases turn out to be insufficient due to the difference

in the recombination rates kr for reactions in which different cata-

lyst molecules (X) participate. The values of the constants kr for

various reactions and different catalyst molecules are giv.-i in

Table 13, adapted from the book by Chung [10]. As is seen in Table 13,

the basic scheme which the dissociation reactions follow can be

written in the form

& + x A + A ÷ + X.(.9
As 4.X(J 4-39 )

Here A2 denotes a two-atom molecule, A denotes an atomO X reprosents

a catalyst particle (atom or molecule).

The process of dissociation and recombination, occurring accord-

ing to the scheme Aa : A + A, iLe., without thie participation of the

particle X, does not play an important role. The rate of the forward

reaction is small, since the direct disintegration of a strongly ex-

cited molecule is very unlikely. The rate or the reverse reaction Is

also small, since the molecules forming as a result of combinations

involving two atoms possess a very large energy. Due to this fact,

a majority of such molecules dissociate upon the first collision with

other particles.
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I

I 2Reaction jb,. !/mole sec

IO;-- 0 'o.+X .1 I-

N. NO At12.tI'W.•T'

iNO

NO + No N +~ 0+ X 16. No~

0 +th0NO +N j3.3 1A1 o
S-K I mn- Ii

Table 13 indicates that the recombina~ton r.tod rot- o n un

nitrogen mayt di•rer al.SinIicantly dependine on the type of the oatV-

lyot particle (X) partlcipating In the roaution. reaction rate

donatanta, for reactions which differ only In the typo of the cata"'yot

particle, depend dolely On the tomperat:'rt an-1 %r- re~a-ed to toch
other by a relation which follows rrom the pr.nc•gIie of t4tal l

balanoo:

A))
*T.

where n (T) is an equllibrium oot•tut given by EquatL t ,

*Usitg the relations obtalind earlier In this #eotlon, uL zi

difIcUlt to write an oXprvoSIon Cor the aas rate of romitten or

the atomic speoles wA to a reaction described by the stooeh .½

Equation (4.39). Here I' tile -'xtur? Conists of .1 'tocios, vt~n 1
a general. ease the ;Mass rate of tor~4loan Aan be Alned, in

accordance with the principle of t"e lndependende of reaeL•ios(ý •1.1
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by summing the rates of formation in each of the reactions (in this

case the number of reactions s is equal to the number of species N).

For later use, it is convenient to obtain an expression for wA in

terms of the mass concentrations of species. Therefore, we shall use

the last of Equations (4.20) for the rate of formation d[nA]/dt, and

Equation (4.16) and the last of Equations (4.1 9 ) for the equilibrium
constant and the ratio K,/K., respectively. Taking into account the

* fact that for all N reactions of the type (4.39), differing only in
the catalyst particle X, the stoichiometric coefficients are identical
and equal to v^, t,.v =t. v-0, vi. -0, vi vA 2, and also the
fact that

VtN . '& ,,N

we obtain

WA• IV, i , -- Z

pte~lt -P(4.41l)

Here and below the superscript (e) denotes the equilibrium parameters;
eX'sis the mass concentration of the catalyst (W) in the sth reaction;
R Is tha number of species (reactions).

Sometimes the mass rate or formation ot, tht atomic species vA
&ay be more conveniently expressed not it terms of the dissociation
rate donstants kda, as In the Expression (4.41). but in terms of the
rooombination rates krs' In this caseb In view of Equation (4.40)
and the relation between the constants Kn and K., given by "Equation
(4.18)o• t Is not hard to obtain the result

( tA9 00 *

In the case or reaction (4.39), the equilibrium constant KC,
generally given by Equation (4.106) becomes
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K, (4.43)

In order to determine the equilibrium constant we turn to Equation

(4.21). For the reaction (-.39), the former equation becomes

In -r + 2 14 Q,(A) -In QM,(AS). (4.443)

Let us substitute the expressions for the partition functions of the

molecules (4.26) and atoms in the preceding equation (the partition
Sis defined

function for the thanslational energy levels for atoms, Qti eie

in the same way as Q 2 , except that mAz must be replaced with MA).

Upon substitution and changing from t to Ko, by Equation (4.18), we

obt an

rn(4) M'r (4.4s 0( .45)

Here Td is the characteristic dissociation temperature, equal to

z (4.46)

SIs the dtssoc lar.ion energy per unit molecule mass, 6A 0 is the

dissociation energy per mole of the starting substance (molecules).

Thus, to determine the equilibrium constant K0 It is necessary

to know the characteristic temperatures. or dissociation, Tdb of
I::' vibration, T., of rotation, Tr. as well as the electron partition

functions for the basic components ot the air. Data on the charac-
4.:.,teristlc temperatures are given In Table 14 (113.

The electron partition functions are written In the form (see

the paper by Hansen which was quoted)
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Q.3 + 2oXP Ir( 11) + exp (18 990)

Q~4+i exp(.2!0) + Ooxp (-.-:-.(.7

TABLE 14

----. O Tr, K jT K

01 3 5.312.10'* 59000 W 270 2,08
Nt 28 4,160.tOM 1H3200 3390 2,89

Equations (4.47) imply that in thq temperature range under consider-

ation, (2000 - 80000 K), the ratios or the electron partition functions
for oxygon and nitrogen, which are necesvary in calculating the
equilibrium constants, are only insigni!'icantly modified. Therefore,
we can write approximately

• • •,(4.48)

Ir we made the assumption (4.48) - namely, that the ratios of the

electron partition functions are constant (I'or nitrogen this assump-
tion is satisfied to a high degree or accuracy and for oxygen the

error does not exceed 10 - 120) - then the expressio3 for the equili-

brium constant (4.45) may be written in the following form:

p.it r\'.( .,

Here

MA-'k- - ) iv r•. (4.,50)
01.
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is the so-called characteristic density. A dissociating gas whose

equilibrium state is described by Equation (4.49) (Pd ' const) has

come to be called a "partially excited dissociating gas" (12]. For

oxygen, assuming Equatio.i (4.48) is satisfied, Pd - 151 g/cm3. For

nitrogen under the same assumption, Od = 107 g/cm3 (12).

9 If we compute the expression

PaL ~ P(i-'l-OXP ( 4. (14,51)

which appears on the right-hand side of Equation (4.49) then we see

that, for gases such as oxygen and nitrogen, the value of PdL varies

relatively little within a wide temperature range. This can be seen

in the Table 15, adapted from the work by Lighthill, which was already

quoted in this section.

TABLE 15

4 14 106 jt It 14 44 IF333 Il)
M3 5 j 0 133 )14 iti its

This feature of the behavior of OdL was used by Lighthill, who

proposod a model or an "ideally dissociating gas" in which one or the

basic a3sumptions is the assumption that the value of rdL' which just

like od ha the dimensions of density, is constant. od* came to be

called the characteristic density of an ideally dissociating gas.

SPor oxygen and nitrogen, the values o•fdL may be taken to be equ*l
to 150 g/cm3 and 130 icm 3. respectively (other properties of an

Ideally dissociating gas, just as the properties of a partally ex-

clted dissociating gas, will be ronsidered in the rolkowine section).

Thus, for an ideally dissoclating gas the Expression (4.4I9) Cor the

equilibrium constant Kc. In view of Equation (Q.51). becomes



& rT-~ (4.52)1

Now substituting the Expression (4.52) for the equilibrium con-

stant K into Equations (4.41) and (4.42), we obtain the following
equivalent relations for the mass rate of formation of the atomic
species:

"At (4-53)

For a binary mixture consisting of atoms and molecules of a

single gas (CA + 0A2 c 1), the preceding expressions will become

WO -tCA)MAw@X T).. -r_- WAb

In those cases when the ditrerence between the dissoclation rate

consat~nt (or', which is the same thing, recombination rate oonetants)
is inasigitca~nt and one cai limit himaefi to just one conatant,

EOuatiOns (4-55) Wnd (4.56) will be written In the or0M

IPAu

VA A)~ -.rý)

Using 94uations (4.43) and (4.45), It I* not hard to reduco the

last two expressions for the mass rate Or romatitn or the atomli

speoles to the tore
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S'A.J. 'kL c-- ]---' ,(4-59)

W A O'WLr(1+CA) ± _) (4.60)

Equating the right-hand sides of Equations (4.59) and (4.60), we
find after simple alpebra an expression for the equilibrium constant

K= R t - C)'" (4.61)

"The rear .Aon rate constants generally depend on the temperature
according to the Arrhenius law [see Equation (4.28)], i.e., they
increase exponentially with the temperature. The atom recombination

-ale Qonstant is an exception to this rule, since the recombination
reacti-on proceeds without energy losses to activation (Ear = 0). The
expression for the recombination rate constant has the form

•-k, Z,(T). (4.62)

For recombination reactions, occurring I n the air, kr is satis-
factorily approximated by a power-law dependence on temperature, of
the form (see Table 12)

• :k, - A,.T- (0 •< n < 2). ( .3

The equilibrium constants K for the more important reactions,
n

occurring '.n the air at temperatures ranging from 3000 to 80000 K,
were approx~mated by Ree" (see the work by Ree, already quoted in
this section) by relations of the form

K',, A "oxp(--

The result. oif the approximation (with an error less than 10%) are

given in Table 16.
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TABLE 16

Reaction Equilibrium constant Dimension-
Kn ality

Ot + X . C + 0 1 X l,2.10T-i"exp (-118 000/RT) mole/cm3

N2 + X • N f- N + X t8exp(-224900/RT) 3mole/cmNO + X - N + 0 + X 4,0exp (-150 00QRT) m
N, + O NO + N 4,5oxp (-75 000/RT) Mole/cm
NO + O 0- + N 0,24 exp (-32 020/RT)
N2 +- Ot V NO + NO 19 oxp (-42 980/R7) i

Table 17 lists the values of the rate constants for reactions

occurring in the air, which were recommended in the monograph by

Ye. V. Stupochenko et al. [13].

The boundary conditions at a catalytic surface generally have

the form (4.36). For catalytic recombination reactions, the condi-

tions at the surface are usually far from thermodynamic equilibrium,

[A]w >> [A](e). Therefore, the second term on the right-hand side
of Equation (4.36) may usually be neglected as compared with the

first. In this case, Equation (4.36) becomes

JAjW k, *- •t A)n0' ( 4.64 )

Using the expression for the diffusive flow of species i (1.57), we

write Equation (4.64) in the form

#CA k.( C)W.( . 5

Here Kw is the rate of the catalytic recombination, which depends on
the temperature according to the Arrhenius law (4.37); n is the order
of the reaction.
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TABLE 17

Reaction Ix Ik1  cm 3/mole-sec

1) 02 + X H0l 5,2-1A0fo

~1;~aimoeNta 2,5.10u T'l (ANexp~ *t.AKo

0 6,25.101VT'I(-t.)
1'.xp

N.NO k1 (0t)

LAr 4,2.1011 T%1 AN* AN

N2) Nit + X -. ,51 " l A l -A

225 kca1/mole N 1185.1011' T e~)1 0 xP T-~
0,, NO, 0 k, (NM)

Ar 6,8.IOIIT'/l (AN R0.4l xp (A~!)

8) NO + X (1, NI,Ar 711 lt8 x

Ago ~ NO,O0, N 20ki (Ar)
15 '5 kcal/mols

N .N+N tt -. 3.i0'T exr(-.7t0O/frI')

Nj + 01 9,1. Siw T-*"' exp (128 800/t?)
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If the wall temperatures are not too high, reactions of the type

(4.32) proceed in the first order, i.e., n = 1.

Equation (4.65) implies that for kw = 0

which corresponds to a chemically insulated (absolutely noncatalytic)

surface; for k,-*-oocA,-*0, which corresponds to an absolutely catalytic

surface.

At the present time, information regarding the rate of the

catalytic recombination reactions for nitrogen and oxygen at various

surfaces is very limited. %Some of the available results are plotted

in Figure 58, adapted from the work [14]. The abscissa axis in that

figure measures the catalytic ability Yw' related to the constant kw

by

S (4.66)

On the ordinate axis, we plot the

, .., ., cm /f wall temperature % $. The figure

Au i• includes the lines,?f constant

yrex kw, which for oxygerk and nitrogen
LICI - are practically identical.

KG1
0 It should be noted that the
Sdata given in Figure 58 were ob-

!Pyrax V1 A•, Al tained for a recombination of
pure nitrogen and oxygen~. "he

Catalytic ability , processes of catalytic recombina-

tion for a mixture of nitrogen

and oxygen have not been suff'i-
ciently investigated.

Figure 58
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§ 21. The Properties of Partially Excited, Dissociating

and Ideally Dissociating GaseL

In the preceding section, we obtained the expressions for the
equilibrium constants for a partially excited dissociating gas (4.49)

and an ideally dissociating gas (4.52), as well as the expressions

for the mass rates of formation of atomic components.

For a partially excited dissociating gas, consisting of atoms

and molecules (binary mixture), the equilibrium composition can be
determined from the following relation:

C(_)_ Pd rT r Td
2 TOflj (4.67)

which was obtained from Equations (4.43) and (4.49). The value of
the characteristic density Pd' generally given by Equation (4.50), for

oxygen may be taken to be equal to Pd (02) = 151 g/cm , and for
nitrogen - Pd (N2 ) = 107 g/cm3.

For an ideally dissociating gas, Equations (4.43) and (4.52)
imply that

PdL (x T7* r S=PO - (4.68)

where PdL is given ay Equation (4.51).

For oxygen, we take pdL a 150 g/om3 and for nitrogen PdL 130

g/om3.

For later use, let us consider the thermodynamic properties of

dissociating gasses.

Statistical thermodynamics leads to the following expressions
for the enthalpy and the integral energy of a gas mixture:
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h = T s Qt,1 Aj (4 .6 9 )

ELMeTQ. + Ai-l (4.70)

Here Qip is the partition function of species i in a gas mixture at
unit pressure, defined by Equations (4.23) - (4.26); Qc is the par-
tition function for the ith component of the gas mixture of unit
concentration

° -(4.71)

Q is given by Equations (4.24) - (4.26); h is the formation energyii
of species i per unit mass at a temperature equal to absolute zero.

For a binary mixture of atoms and molecules with ground electron
states, substitution of Qip and Qic into Equations (4.69) and (4.70),
respectively, gi res

+= + CA÷ (+-CA) T + cA,,
2/T_2 , 1A (4.72)

r "T

E -L +-LCA + CA)T T +CAD. (4.73)2 2 e 'T-/ I t

In the above expressions for the enthaipy and internal energy of a
partially exicted dissociating gas, the third term i-a brackets des-
cribes the contribution of the vibrational degrees of freedom to the
enthalpy and internal energy. The magnitude of this term for the
temperature changing from 0 to - varies from zero to (1 - cA). The
maximum contribution of the vibrational degrees of freedom occurs at
cA - 0, and amounts to about 20% of the total enthalpy and 30% of the
total internal energy.

At high temperatures, when dissociation becomes noticable, Equa-
tions (4.72) and (4.73) may be simplified by setting [Tv/T] [exp
(Tv/T) - 1) - 1/2. According to this assumption - which provides,
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along with the assumption about the constant characteristic density

(L= cfst), a basis for the Lighthill model of an ideally dis-S(dL ontaLghhl

sociating gas - it is assilmed that the vibrational degrees of freedom

of gas molecules are excited regardless of the temperature by an amount

equal to one half the value of the "classical" vibrational excitation

of molecules. This assumption does not lead to a great error at high
* •temperatures, since with a temperature increase, the molecule concen-

tration (1- cA) decreases and the contribution of the term CAD
increases. Thus for an ideally dissociating gas we have

kh -- (4 -+ CA)-W-A T +u CAD, (4.74)
R

E=32F T n+ CAD. (4.75)

Next, having the expressions for the enthalpy and the internal

energy of partially excited dissociating and ideally dissociating

gases, let us determine the "effective" specific heat capacities of

a gas at constant pressure and constant volume.

By definition, the specific heat capacities of a mixture of gases

at constant pressure, Cp, and constant volume, Cv, are given by

0h

Substituting in Equations (4.76) the expressions for h and E (4.69) and

(4.70), and taking Equation (4.67) into account, we find the "effective"

specific heat capacities of a partially excited dissociating gas in a

state of equilibrium

To

7 A + (t - CA)-.. .F
Yi +T (4.77)

+ t C A ( 14 ) ( + Td ,T
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TV

Co t T
--- CA 4-(i--CA) __T+

2MA7

+ CA(+ CA) (_+I d (4.78)

Similarly, using Equations (4.68) and (4.74) - (4.76), we obtain the
"teffective" specific heat capacities of an ideally dissociating gas

in thermodynamic equilibrium
C -4 + CA + -2CA t-CA) -t + ,

CA j (4.79)

CA (t -CA) (TaS-.-=3 + 2.,CA ýd . (4.80)
=MA

From the last two equations, it follows that the assumption about

constant excitation of the vibrational degrees of freedom implies

that the ratios of the specific heat capacities of an ideally dis-

sociating gas before the onset of dissociation is cp/Cv = 1.33, and

not 1.4, as in the case of real two-atomic gases in the absence of an

excitation of vibrational degrees of freedom. In addition, it is not

hard to see that for an ideally dissociating gas, the specific heat

capacities at constant volume per unit mass for molecules and atoms

turn out to be identical: cvA = cvA2 , since the number of the degrees

of freedom of the molecules (6) is twice as large as the number of

degrees of freedom of atoms (3).

In various gas-dynamic investigations) including studies of

"boundary layers in dissociating gases, it is useful to introduce the

characteristic pressure of an ideally dissociating gas, Pd

P4 == •PdLTd. (14.81)

The values of Pd for oxygen and nitrogen, along with other quantities

describing the properties of ideally dissociating oxygen and nitrogen,

are given in Table 18.
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TABLE 18

S°O_ _dL Pd atm

01 59000 150 2,3.10'
N, 113200 t1O 4,t.101

An expression for the equilibrium concentration of atoms in an
ideally dissociating gas as a function of temperature can be easily
obtained from Equation (4.68) by using the equation of state for a
binary mixture, transformed with the aid of Formula (4.81), to the
form

P
Pd- 0 - (4.82)

Eliminating the density p for Equations (4.68) and (4.82), after
simple transformations we obtain

r T I

CA [+±j ,~-x -4-v" (4.83)

In concluding this section (see Figure 59), we shall give the
results of calculating the equilibrium concentration of oxygen atoms

.-- 7.. ---- at the pressure p a 1 atm and vari-

P •atm •ous temperatures for an ideally

dissociating gas [dashed curve cor-
responds to Formula (4.83), OdL

i -/ 150 g/cm ] and for a partially

- excited dissociating gas [solid
7W MV Iff 40 Mi curve corresponds to Formula (4.67),

1d a 151 g/cm31.
Figure 59

As seen in Figure 59, adapted

from an earlier quoted paper by
Glass and Takano, the difference between the equilibrium concentrations

of an ideally dissociating and partially excited dissociating gas is
PTD-small.
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§ 22. Statement of the Problem of a Turbulent Boundary

Layer in a Dissociating Gas

Remarks concerning the dynamic structure of a turbulent boundary

layer at high supersonic velocities. The results of measuring velocity

profiles in a turbulent boundary layer on a fI3 t plate for large Mach

numbers (up to Me = 10) and various values of the temperature factor

(see Section 11) indicate that the velocity profile - constructed in

terms of universal coordinates - in a laminar sublayer can be satis-

factorily described by a linear relationship, and in a turbulent core

(at least in its internal portion) it is of the logarithmic type.

As already noted above, a characteristic feature of velocity

profiles for lar&e Mach numbers is the fact that the width of the

buffer zone between the laminar sublayer and the turbulent core is

very small. The buffer zone is in essence almost completely non-

existent, and there is a sharp transition from the sublayer to the

core.

Another important feature of velocity profiles at large Mach

numbers is the increase in the relative thickness of the laminar

sublayer. with increasing Mach number. In an incompressible fluid,

the thickness of the laminar sublayer, as we know, does not exceed

2 - 3% of the thickness of the entire boundary layer. According to

the data obtained by Hill and given in Section 11, at Me * 9, the sub-

layer thickness'may be about 15% of the entire thickness of the boundary

layer. 1

These features of the experimental velocity profiles for high

supersonic velocities will, of course, be taken into consideration

when constructing the semi-empirical theory of a turbulent boundary

layer. The very possibility of formulating a seml-empirlcal theory

of the turbulent boundary layer for high supersonic velocitles is to

an extent based on the existence of a sufficiently extended logarlthoml

section of the velocity profile in the turbulent core. The exAstence
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of such a section permits us to use the semi-empirical formulas of

Prandtl and Karman in the theory of the turbulent boundary layer for

high Mach numbers, since these formulas, as shown in Section 10,
always result in a logarithmic velocity profile, no matter what the

density distribution in the boundary layer is.

The sharp transition from the laminar sublayer to the turbulent
core (disintegration of the buffer zone) Justifies the use of the

Prandtl double-layer scheme (laminar sublayer-turbulent core) in a

theory of the turbulent boundary layer for high supersonic velocities.

Finally, the latter feature of velocity pi-ofiles for high super-

sonic velocities (increase in the relative thickness of the laminar

sublayer) indicates the increasing role of the laminar sublayer In the

heat and mass transfer in the boundary layer. As a result, when cal-

culatins the heat and diffusive fluxes, one must take proper account

of the thermal and diffusive properties of the sublayer (deviation or
the Prandtl and Schmidt numbers from unity). As far as the computd-

tionm of friction for large supersonic velocities is concerned, here It

is apparently permissible to consider the flow in the laminar cub-

layer aasuming that the Prandtl and Schmidt numbers are equal to unity.

.xuation -o the turbulent boundary layer in a disocting j•U

QPiindar-2sonditions. The genoral equations of the turbulent boundaryj
layer in a multicompvment mixture of checilcally reacting gades *ere

obtained in Chapter II. In the present chapter, we shall oonrfine our
attention to atationary flowes in boundary layer under the a•souttion

that the turbulent Prandtl and Schmidt numbers are equal to unity.

The fundamental equations will be written in 'he followirne i.or:

equation or continulty
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momentum equation

dp1
*~PU W +a PV + 8)

'IY + (,,4.85)

energy equation
+O H- a SH )+

P-+ ( 4.86)

-

equation of the conservation of species i

+ (4i,87)

equation t state

pRT~~. 0.88)
• •I

Total anthalpy HI Is isven by the expre~sions

Por a nonpermeable 3urract, the boundary conditions ror the
voeoalttes have the usual form

t V(e.9O)

e-#U tot ,.i*

The boundary conditloot • or the total enthalpy tan be eatily

obtained tica Equation (4.89). At the aill, ve have

tot rO

at the outer edge or the boundary layer

• " • :-' •"• T D 44" C "l•"- " 23 ".•" -7"2 ..3-7 "1 •' • *' .... :•:• '''• '•' ;:•:••' ''• ':F • ' '' •••••. I l .. :'?•"":•"'• ••:" •'• * **''-."••:•V:• •: :" •-):: "" •"" '



rT
for ( 4.92)

The boundary conditions- for total enthalpy (4.91) and (4.92) contain

* oInoentrations of species i at the wall, aiw, and at the outer boun-
dary, 'ci The concentration of species i at the outer boundary Is

usually known from the soluttion for the d5uter flow. Therefore, the

boundary condition for concentrations at the outer boundary has the

form

Cjtwfor U- W-

The concentration at the wall c± in the presence of surface
catalytic reactions is generally unknown beforehand and must be deter-

mined when solving the problem with the aid of the boundary condition
(4,36) Cror air, at not too high wall temperatures, the conditi-on
simplifies- to (46),The boundary conditions for concentration at
the wall are known in two extreme cases: 1) ourface is absolutely
nnonctalytio Nk1  0). In this case, in view ot the condition (4.36)

~ fore~O:(4-4)

2) durfaco Is absotutoly qatalytic (k,4  I ) n this Oanb in view
orth u"wsa condittio (4.36), ve have

Pot air, and not too hIgh turface temperatutv, Cc) 0 rotr Y 0 .

ta

In the thdoory at the turbulent bdutitVtry layer, it i4 userul In
sAnAY 0",04 to uWO the enea'V equati"on WnW the equationh aor cOsetvatie"



of species I in terms of the Crocco variables (2.63), (2.64). Below

the flow in the turbulent boundary layer will be discussed within

the framework of the double-layer Prandtl scheme (laminar sublayer-

turbulent core). For this reason, it will be convenient to write

these equations separately for the sublayer and the core, making use

of the assumption, stated earlier in this chapter, that the turbulent

Prandtl and Schmidt numbers are equal to unity.

In the laminar sublayer, we have:

the energy equation

'4 (4a.97)

the equation or conservation of species i

In the tLubulent orea, the equation* ot enerW and con_•ervatiun

ot apecied I in terma or the Crocco varlables beoame

I'ho iouttdary eundltlaon tar E4iuattoi~ 0.91) (-100lO) vSilI be
vritten In the t'ollatIl-bt (orM:

jj~~,?~+t~ 1 .for V.1.

It Ohould be noted that the icA4M#%td tude it the WCInngn• of

the peoent ttetin rogardUW the botmdatj Cotditlon ror concentra-

tio" at the wall are valid a514, In thL •• oae.



Damkohler's number. Equilibrium , frozen, and nonequilibrium flows.
The flow in the boundary layer with chemical reactions occuring in the

outer flow and In the boundary layer itself depends on the relation

Getween the rates of the diffusive and chemical processes.

Consider the equation of conservation of an atomic species (4.87),

assuming for simplicity that the mixture is binary and consists of

atoms and molecules. The expression in (4.60) will be used to repre-

sent the mass rate of formation of the atomic species. Substituting

this expression in the equation of conservation, we have

pu-s+ +

Let us pas& in this equation to d.inensionler:: quantities, introducing

as the unit of length thie cnaracteristic dimensicn of the body L; as

the unit of velocity, the velocity of the incident flow U®; as the

uniti of density and vLscosity, the density and viscosity of the

incident flow P. and P.. Upon making this substitution and performing

simple al.gebra, we obtain

- - W

lie ie

"-;t L

Thi dimensionlesa parameter Da, appearing on the 'iight-hand side

or the equation thust obtained, is called the Damkohler numner. The

me•entt• of the Darnkohler number is easy to see by considering separately

the numerator and the denominator of the last equation. In fact, i',

too asily aeon that quantity L/U,, in the numerator, characterizes the

ti.u e ont by a par t icliv In t!.-* boundary layer, (Tflow). The quatitfty

n te deominlator, 1/t.:N A-2 ki t atho his the dimension of' time.In the dn~i~~~ h'



This quantity characterizes the lifetime of an atom and is the

characteristic time giving the rate of a chemical process.

Thus, the Damkohler number is the ratio of two characteristic

times: time spent by the particle in the flow (time of diffusion) and

the duration of a chemical reaction, i.e.,

L
D OtXUM - . (4.102)D o tx.• =

P. A1 k,

If Da 0 0, then the duration of a chemical reaction is much longer

than the time spent by the particle in the flow (tchem > t flow), and

consequently, the effect of chemical reactions in the gas phase on

the flow in the boundary layer is insignificant. In this case, the

gas mixture in the boundary layer may be considered chemically inert,

and the boundary layer may be regarded as of chemically "frozen." The

products of dissociation, atoms, in this case appear in the boundary

layer only due to their diffusion from the outer flow. For a chemically

frozen boundary layer, the equation of conservation of species i is

simplified, since the term expressing the mass rate of formation of

species i is equal to zero, (wi 0).

If the Damkohler number is very large, Da ÷ -, then the duration

of a chemical reaction is much smaller than the time spent by a particle

in the boundary layer (tchem " tflow). Consequently, there will be

enough time for a local thermodynamic equilibrium to be established

at each point of the boundary layer. The distribution of the concen-

trations of each species will not depend on transfer processes (con-

vection and diffuLion), but will only depend on the local values of

the temperature and pressure. The similarity to the equation of con-

servation of species i will not occur in this case, and the distribution

of concentrations will be determined from the condition wi n 0 (the

equality sign must not be confused with the identity sign in the case

of a frozen flow). The boundary layer in which thermodynamic equilib-

rium is established is called an "equilibrium" layer.

FTD-HC-23-723-71 -26



& When the Damkohler number has a finite value, the rates of the

chemical process and the transfer processes turn out to be of the same

Sorder (t flow/tchem ' 1). Therefore, the thermodynamic state of the

blayer will differ from its equilibrium state. Such a boundary

layer will be briefly called "nonequilibrium" layer. To determine

the concentration distribution in this case, one must use the equa-

tion of conservation of the individual species in their general form.

§ 23. Velocity Profile, Integral Thicknesses, and

Friction on a Flat Plate

Returning to Section 12, it is not hard to see that many of the

results obtained there are also valid in the case of flow of a dis-

sociating gas over a flat plate. In fact, the expression for the

velocity profile in the turbulent core, (3.28), was obtained from

the Karman formula without any assumptions about the density variation

in the turbulent core. Therefore, it can also be used to calculate

the velocity profile on a plate in the presence of dissociation. This

expression, using the assumption (3.1) according to which friction T

is constant across the boundary layer and equals Tw, becomes

S'; (4-103)

Using Equation (4103), we find the derivative dnfdý in the

turbulent core which will be found necessary below

W T o0p (Xt da . (4.104)
- Ua

In the laminar sublayer, we shall use a linear relation for the

velocity profile, similar to the one used in Section 12.

IF (%.105)

This relation was Justified on the basis of experimental data in
Sections 11 and 13.
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The derivative dn/dý in the laminar sublayer is obviously equal to

d=i. (4.106)

To determine the Reynolds numbers, constructed from the momentum

loss thickness and the displacement thickness, as well as the form

parameter
H* =5/*

one can use the expressions (3.42), (3.44), and (3.45), obtained in

Section 12 for an arbitrary density distribution in the boundary

layer.

For convenience, we list these expressions here

Re" exp [t dalx

0
7x-I Of(I)

Re'R eP

+P PCw-- - V x (4.107)

,,'C [, +-Pt •)
t P_,( 1) +!M ) , 3 p'( t)'\ I

C 7•'X

Mere P,
2L L
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It is easy to see that to calculate friction one can use formulas

obtained in Section 12. One must not try, however, to be specific about

* the functional dependence of the gas density in the boundary layer on

the velocity in these formulas. This refers to the function K which,

for an arbitrary density distribution in the boundary layer, should

be written in the form

S(4.103)

The form of the functions F, 0, and N which are necessary to calculate

friction remains the same in this case of a flow of a dissociating gas.

For convenience, we shall list all the relations necessary for calcu-

lating friction

F. -'U242' G it (4.109)

It will be recalled that the local friction coefficient cO on a plate

in an incompreasible fluid can be calculated either u3ing the Karian

Formula (3.59) or Formulau (3.80). The dynamic vi4scooity coefficient

can he determined using the power law (3.61). The function I oun be

eauily calculated using the last or Equations (4.109) gnd a tabe o"

decimal logarithmu.

In a aimilar dashlon, all the formulas for the local and avtrag
friction, obtained in Section 12, may be extended to the eae of a

dissociating gas. Vie effect of the theorochemical State of flo*4 I
$the boundary layer on the drag will, of course, be ftnitested throu-j

o(u) and the viacosity P. tiud, the problem of calculating tho drajC
reducea to establishing a relationship be•tween the tetooaature a46d

• * denaity, and the velocity.

The next aeetion of the present chapter- will te devoted to the

derivation of thede relations for froten, equilibritu, tnd nonequlib-

rium flowu in the boundary layer.
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§ 24. Longitudinal Flow Around a Flat Plate with

Prandtl and Schmidt Numbers Equal to Unity

Relationship between velocity profiles and total enthalpy. Let us
consider the longitudinal flow of a gas around a flat plate (dp/dx = 0)
at supersonic velocity (Figure 22). The Prandtl and Schmidt numbers
(consequently, also the Lewis number) will be assumed to be equal to
unity. In this case, the differential equations of momentum (4.85),
energy (4.86), and conservation of species i (4.87) become

OU au a[ . (4.110)

09 all a a
+- +)- P (4.111)

+ &, a &, (4.112)[4 + +)

Equations (4.110) and (4.111) and the boundary conditions (4.101)
imply a similitude relation between the velocity field and the total

enthalpy field

., " V (4.113)

Solving Equation (4.113) for Hb we get

+ V •+,- k,) (4,, (4.114)

ftllibrium rlow or an ideally di •qooiatIpnEas. In the case of
complete therftodynamic equilibrium, tho concentration of the *,comio
species in the mixture is uniquely determinod by the local '•alues or
pre.oure ,and temperature. This relation of concentration to pressure

an- tooper~ re for an Ideally disdociating las is given by Equation
0(.83). Stnoe the pretsure It conatant acroes the boundary layer, the

prtesure p in this equation muat be aet equal to It$ value at the outer
edge of the boundary layer pd . A- a rerult, we have

FT,-iC-23-723-71



Here Pd and Td are the characteristic pressure and temperat1re (for

oxygen and nitrogen, the values of these quantities are listed in

Table 18).

The relation between the velocity profiles, temperatures, and

concentrations can be easily obtained by substituting the expression

for the enthalpy of an ideally dissociating gas, (4. 7 4) into the left-

hand side of Equation (4.114). The substitution followed by simple

algebra yields the following relation:

•i u' (o- ,,,) U- it. +47T + cA (t+ •)=o.,• ) 0.(4.116)

Here

/q

-¢ + (4 + T,).• (4.117)

-7 - 4-, (4 + *AO) •.+
7.

Equations (4.115) and (4.116) enable us to establish the relation

between velocity and temptrat'.re and concentration. Placing Equation

(4.115) in Equation (4.11 6 ), we obtaln the rollowing quadratic oqua-
tion in teoms of dia.tqsionleos velozity:

(4.118)

0

Solving Equation (4.118) ro- ,e et
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The sign in front of the radical in Equation (4.120) is chosen to

satisfy the condition U < 1.

After a relationship between the velocity and temperature is

established with the aid of Equation (4.120), one can use Equation
(4.115) to establish a relation between the velocity and concentration.

The density distribution in the boundary layer can be easily

determined for the known temperature and concentration by using the

relation

P = r T -• 11+ 0 (4.121)

which can be obtained from the equation of state (4.88), assuming that
the pressure is constant across the boundary layer.

Using the density distribution and Formulas (4.108) and (4.109),
one can determine the local friction coefficient.

Frozen flow of an ideally dissociating gas over a catalytic plate.
In a frozen flow, the rate of chemical reactions is negligibly small
compared with the rate of diffusion (wA 0). For this reason, the
concentration distribution is completely determined by diffusion

processes.

The equation for the conservation of the atomic species (4.112)
in this case becomes

The conservation of molecular species, cA., in this case Is

unnecoasary, since ror a binai*y mixture the concentration, a I - oA*

Equations (4.110) and (4.122), as well as the boundary conditions
(41.101), Imply similitude between the velocity and conoentration rields•:

PTD.-HC-23-723-71



.4 1
u CA CAW

7- CA.- CA. (4.123)

In order to determine the atomic concentration at the wall, we use
the boundary condition (4.65) which, assuming that the order of the

k .catalytic reaction is equal to unity (which is true for air, for not
too high wall temperature), after simple algebra can be written in

the form

W du ~-PWWU.AI.(14.124),--i

Evaluating the derivative (dCA/da)w from Equation (4.123), we obtain,
according to Equation (4.124), the following expression for the con-
centration at the wall:

c! c A. • (I + A.)-•, A,,, ,- P4 (a4-125)

For kw 0 , which corresponds to the case of an absolutely
noncatalytic wall, c• 0  )A i.e., the atomic concentration in tho

boundary layer is constant over its crosa-section and equal to the
value at the outer boundary (this follows from Equation (4.123)].

For k , which corresponds to the case of an absoluteiy
Oatalytic wall, CA W 0, i.e., all atow whiah diffuse toward the wall

become rocombined.

3olving E4uation (4-123) ror aAs we obtain the epdenoe of 04
atomic concentration on the velocity

Substitutint expresslon (0.126) into Equation (0A16) aud $o1vig te
iator for te•pA.ature, we ý,'btain

_--_- •. • -- =r

-i d--r
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Here E, R He are given by Equations (4.117), and 0A is given by

Equation (4.125). w

The density and friction can be found using Equations (4.121) and

(4.108), (4.109).

Nonequilibrium flow of an ideally dissociating gas [14]. In order

to determine the dependence of density on velocity, one must establish

a relation between the temperature and the velocity and concentration,

and of concentration with velocity and temperature. The dependence of

the temperature on velocity and concentration can be easily obtained

from Equation (4.116), and is arrived at without any assumptions as to

the thermochemical state of flow in the boundary layer, by solving it

for the temperature

fw o i+ (Al.-4i U'cA14± +~ (4.128)

In order to establish the dependence of concentration on velocity

and temperature, we turn to the equation of conservation of the atomic

species*, written in terms of Crocco variables. It is not hard to

obtain thli equation from ESquation (4.98) and (4.100), by setting

dp/dC * 0, So1 a in the latter. Combining Equations (4.98) and

(4.100), thus simplified, into one equation) we have

-AT ~+WVA. (4.129)

For simplicity, we shall 4asuie that concentration Is a function

of only the velocity u ane d•aes not depend on the longitudl.nal coordin-

ate t, i.eo, 4uA/( a 0 (Implicit dependence on the physical coordinate

X retains, since 0A a eA (u(xly)] *o justify this assumption, we note

that It is strictly valid it the flow In the boundary layer Is trosen

or it it Is in a state of equilibrium (oee the preceding #otions of

the prsoent chapter). Consequently, woe are entitled to expect that the

explicit dependence eA(() Is so weak that It Ma be neglectedt 6 ).

Pootnote (6) AppearS on page -269.
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With this assumption, Equation (4.129) becomes

-A- IPA (4.130)

Integrating Equation (4.130) twice and deteriining the integration

constants from the conditio:is at the walU, we obtain

CA CA \ + ~ i WA -(4-31

0 *

Making use of the boundary condition (4.124) and the condition

at the outer boundary (cA - CA for u - Ue). we find an equation for
e

the concentration of atoms at the wall in the presence of surface

catalytic reactions

+AU M w, u t . " (41.132)
CAW (CA.W..~ + du4 9

where A. is given by Equation (4.125)

For later use, it will be more convenien'. to write Equation (1.131)
in th4 fololowing form, which is easily obtained if one usos the
conditions at the outer edge of the boundary layer:

(4-133)

•: Here

da, (.134)

Equation (4.133) imp~lea that the Influence of nonequilibrium d3s8oci-

ation on the diaribution of atomic concentration In the boundary layer

can be taken into account by calculating I (G). In the particular

case of a frozen flow, in the boundary layer (wA - 0) I (G) # 0, and

the distribution or the otomic concentration Is given by tquation
(11.126).
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In order to determine I (i), we write it in the form

1 ()I ; - (4.135)0 o V y
By transferring in the integral of Equation (4.135) to the universal

coordinates (3.8) and substituting the expression for the mass rate of

formation of the atomic species, w (4.60), we have

I (a) .L.!.d4SC, 0. +(t CA) (436: • ~ ~. S1) t

Here

C, 

(43

The quantity C , as can be easily seen, represents the Damkohler num-

ber (4.102). The physioal interpret.a•.loo of thiu ntAmbe" was discussed
in detail in Section 22. In those cazes when we do deal with d1ssoti-
ation reactions, Cr is sometiMe3 called the recombination parameter.
i f the parameter is largo, the flow will be steady; if it t1 siAO, it

will be frozen.

The derivative dn/d#, in Equation (4.136), Is given by Equation
(4.104) in the case of the turbtlent core, mid by (4.106) In •the iatI-
nar sublayer. The friction parximeter c Is given by Eq4uation (3.8),

and the equilibrium atom con0ensa"tion Aby suatt.:i. ( o" 68), -A

To calculate the concentration pro•ile uaing -ormula (4.233), .. ne
can Use the tethod of sucesaivee"proxieatlons. Pi t the charatter-
lstics of the boundary layer oA (u), T (u), o (u), ofc are oomputed
tor froten and steady tlowa (tee the ptvoding zeotiono of the prdeent
chapter). As the aero-order approxic•tion fop the atomid doncentra-
tion, we can use either the atomic concentration In tho froten flow

(parametero of the froten flow will be denoted below with the Subdoript
t), a CM or ta- arit-:tic swan or Cho aeftenttion
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C) (e)in the frozen and steady flows, i.e., C(1) 1/2 (cA + cAe) (the
subscript e will refer to equilibrium values). After using Formula
(4.133) to find the dependence of concentration on velocity in the

first approximation) cA , we use formulas (4.128) and (4.121) to deter-
(1(1)mine the temperature and density, T and P . Having the density

distribution, we use Formulas (4.109), (3.8), (4.104) and (4.106) to
determine the values of a(.d/de() etc

Figures 60 - 64 give the results of calculating flow in the
boFWdary layer on a wedge with th% semi-angle at the vertex equal to

30 immersed In a flow of oxygen at the velocity U, a 7 km/sec with the

preNju6 and temperature in the oncoming flow equal to p, 2.85413
at-n and T 20 K(7 ). Thr temperature of the wall was assumed to be

M70OK. The values of the characteristic paramaters and the .-ae of
recombination for oxygen wt.re acaumed to be the same us those in Tables
,x and 14, 7n these i•glires, the lettera (e), (F), (nu), refer to
plot3 dorcribing the equilibrium, flroen, and nonequllibrium flan3,
reapectivery, in the boundary layer.

Figure 60 illustrates the

, .,hdepondence of the concentration of'

* r •oxye•n tyn•lI on the v1locity at ti

httatflt at the boundarn Thyer on a
eCom$letely Catalytic will (kV*
'To illustrate th#e cwworpeve processa

flgun 40 for no~tQIequibrlam flew &1U*t1A

(dashed) -ý'btfIvtd tn (te uric :1 ted Aftz
indicate the ordar ot the:f Apor~iiatloto) . AM can be udeen in ViCure t6i*

tocontv'rgeno@ of the othaehd icopelySatisfactory.

gtoftho tee4)eratute on Velocity In the kowt~afl ltyer, rI4uN 62

Pototo(1) appean ott page 20
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£4.. U

"h----'64
Pi gur

F~w Intebudr her~awP1V14(10YI

?diin igure 62 Ftwa rou re an .

r~ul C30 Prmul (34);thidprotlele f~lotedklyvw ý*Wul iicl

and ht 010litjProild cacul~~dIro the-4w ox rna
and conitionc at th surf-Io or te void-oo ý"Ins, ýoitýo h

tio in thtonaylyrCt omua09) hapoeI
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seen.'from the diagram that in this case the friction in an equilibrium
flow is much greater (approximately 1.3 times greater) than the fric,
tion for a frozen flow. This indicates that, when calculating the

t drag, one must take proper account of the thermochemical processes in
the boundary layer.

Figure 64 gives the dependence of the concentration of oxygen
atoms on the velocity in the boundary layer at a completely noncataly-
tic wall (kw = 0). When Palculating nonequilibrium flow for this
case, the concentration distribution in frozen flow was used as the
zero-ordei' approximation. As can be seen in the diagram (the notation
is the same as in Figure 60), the fact that we took into consideration
the nonequillbrium character of dissociation resulted in a slight
change of the concentration profile as compared with the frozen flow.

The methods of calculating friction in an ideally dissociating

gas presented in this section may, if nenessary, be extended to the
case of a partially excited dissociating gas whose properties were
described in Section 21.

5 25. Heat and Mass Transfer in the Boundary Layer

on a Flat Plate for Prandtl and Schmidt Numbers Different
From Unity

It was already noted above (Section 22) that, at hypersonic
velocitles, the relative thickness of the laminar sublayer increases,
and as a result wo observe an increaslng role of the molecular heat
conductivity and diffusion in the processes of heat and mass transfer
in a turbulent boundary layer. This fact makes it necessary in certain
cases to rigorously take into account the thermal and diffusive prop-
e -ties of the laminar sublayer when determining the heat and mass
transfer on the surface.

In the first approximation, this can be done by abandoning tne
assumption that the Prandtl and Schmidt numbers are equal to unity,

9. FTD-HC-23-723-71 ?Y1
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considering these numbers constant across the laminar sublayer and

equal to their values at the wall. However, if the laminar sublayer

occupies a significant portion of the entire turbulent boundary layer

(20 - 30% and more), such an approximation may be insufficient. The

problem is that the Prandtl and Schmidt numbers in dissociating air

depend on the degree of dissociation. The approximate estimations

made by Dorrance [15] for dissociating oxygen lead to the following

dependence of these criteria on the degree of dissociation:

Pr ~(I + 0,25 co) 0I + CO)Pr i+ I, - Sc= SCo (t + co). (4.138)

Here co is the concentration of atomic oxygen. From these expressions,

it is easy to estimate the dependence of the Lewis number on the

degree of dissociation
10,25co

Le .Le 1 1 (4 .139)

The results of the calcula-
..... tions basel on the above formulas

- - . are shown in Figure 65. The dia-

-"-'". i,, grami makes it clear that the

. •o k.0 Prandtl number varies relatively

0 .,. - little with the degree of disso-

... _ wa hng y prxmt ciation. The same Prandtl number
i• •V dt ff 4• 8 v/,•. may change by approximately a

factor of two. A subsequent com-

Figure 65 parison of these relationships

with the more accurate results

showed that the variation of the

Pr and Sc numbers, as described above, is similar also in the case of

the dissociating air. Thus, if the variation of the atomic concen-

tration is such that the Prandtl number undergoes a noticeable change

across the laminar sublayer, then it might be necessary to take this

change into account in the calculations.
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The deviation of the Prandtl and Schmidt numbers from unity

implies, within the framework of the double-layer turbulent boundary
t• layer model, that the dynamic, thermal and diffusive thicknesses of

the laminar sublayer are generally different. It is not hard to show,

using the equations of motion, energy, and conservation of species i

in the laminar sublayer that

nil
%T _S (4.14o)

The subscripts "th" and "d" here stand for "thermal" and "diffusive",

respectively.

Inspection of (4.140) indicates that if Pr < 1 and Sc < 1 (as is

the case in dissociating air), then the thicknesses of the thermal

and diffusive laminar sublayers are greater than the thickness of the

dynami-c sublayer. In this case, the thermal and diffusive sublayers

occupy a portion of the turbulent core with a 3ogarithmic velocity
distribution (Figure 66). Taking this fact into account, it is easy
to estimate the differences among the dimensionless velocities at the
boundariea of the dynamic, thermal and diffusive sublayers, In fact,
assuming approximately the logarithmic velocity profile in an incom-
pressible fluid (3.100) for the turbulent core, in view of (4,140),
we obtain

Tit - ,7 to Pr. , U -2,875 Ig SC.
(4.,141)

Setting Pr - 0.72, So - 0.5,
-41 in 11.5, we find

I'

This approximate analysis
implies that for Pr t 1 and

_oj S < (for air), it is not noces-
sary to take into account the

Figure 66
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discrepancies in the velocities at the boundaries of the dynamic,

thermal, and diffusive laminar sublayers, and consequently these

velocities may be determined from Equation (3.31).

The relationship of total enthalpy to velocity and concentration.

Reynolds similitude. Recovery enthalpy. In order to establish an

approximate relation among total enthalpy, velocity, and concentration,

we turn to the equations of energy in the Crocco variables, (4.97)

and (4.99).

For a flat plate (dp/dE = 0), these equations become

'"OH ft anO

Wu +- (Le -••- 1)h=L+(

e r r i P r d uP )( 4 1 2

in the laminar sublayer, and

•mmPm 1 H MI • (4.143)

in the turbulent core.

Next we shall make a simplifying assumption: we assume that

total enthalpy is a function of only the longitudinal velocity, i.e.,

H = H(u). To justify this assumption, we note that it is strictly

valid if the Prandtl and Schmidt numbers are equal to unity. In

this case, as shown in the preceding section, there is an integral of

the energy Equation (4,119), which is similar to the Crocco integral.

Consequently, one can expect that for small deviations of the Prandtl

and Schmidt numbers from unity, the dependence of total enthalpy on

the longitudinal coordinate, H (c), will be sufficiently weak.

In addition to the above assumption, we make as before the
assumption that the friction stress is constant across the layer,

i.e., T - C onst =7T 2
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Using these assumptions, Equations (4,142) and (4.143) become,

respectively,

2•.L-• •(Lei -- 1) hi -' (P -) U] 0, (4.144)

d'H (4.145)- ---0.

Integrating Equation (4.144) and determining the constant of integra-

tion from the condition at the wall (for u = 0 q = qw), we find
dh" ' rq
-•-u " • '(Lei - -1)hi -a" + (Pr - P)u • " -• 4 1 6

Here

Sqw --- P-r +-- .- - (Lei-- 1) h, ( 4. 147 )

is the thermal flux at the wall. Equation (4.147), as can be easily

seen, follows from the definition of heat flux in a multicomponent

mixture, (1.79) taking into account only the energy transfer due to

heat conductivity and mass diffusion.

Performing integration from 0 to u in (4.146), and determining

the integration constant from the condition H = Hw at v - 0, we obtain

a relation between the total enthalpy and velocity and concentration

in the laminar sublayer

tH h.• + Pr -h /1-- t,.) 4 - -

(t o r !1

2 ch
Here is the Reynolds similitude parameter,

cf

C (4.149)P. U , UT (u- hT-

ch is the dimensionless heat transfer coefficient (Stanton number),
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Hr is the equilibrium enthalpy of a thermally insulated wall or the

recovery enthalpy (definition of Hr and 2ch/C will be given below).

In the turbulent core, the relation of the total enthalpy to

velocity and concentration will be found by integraing Equation (4.145)

twice. The first constant of integration will be determined assuming

that the heat flux is constant across the boundary layer and equal to
* its value at the wall, i.e., q = const - qw" The second integration

constant will be determined from the condition at the outer edge:

for u 4 Ue, H 4 He. As a result, we obtain

Ml Oft - AIM, •1 - 4). (4•.15 0)

Furthermore, let us consider the case when there is no heat
transfer between the gas and the wall (h a H r). We equate total

enthalpies from Equations (4.148) and (4.150) at the boundary of the
laminar sublayer and solve the resulting equation for Hr$ This

yields

0(.151)

We note that in rormulating (4.151), we made use of the approximate

relation (3.150). The expression for the enthalpy of recovery, Hr)
(4.151) is surficiently general in the sense that it may be used for

calculating the equilibrium, rroren, and nonequilibrium flows.

Ir we introduce the recovery factor r, just as ror a homogeneous

gas, i.e.,

then by equating Equations (4.151) and (0.152), we obtain an expression

for the recovery factor in a multicomponent mixture of Saaes

+D - (--153)
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To determine the Reynolds similitude parameter, we equate the

I total enthalpies from Equations (4.148) and (4.150) at the boundary
of the laminar sublayer and solve the resulting equation for the

I; • parameter in question. This yields

I <

+, Pet. ' A. +

+2(a~) A,~4
(4.154)

In deriving relation (4.154), we use the approximate expressions

(3.150), (3.159).

Making use of Equations (4.149) and (4.154)0 we find an expres-
sion for the heat flux at the wall:

+ +~% 415

flit definition or total v.'thalpy (4.09), underth uAmio

that the npeirift heat ±ap uht:ic of the individual rpecieL do not

Te(it - 2 x-V

The-abvoexprtsaions ror the total epth,4lpy ini the latinar sub-

layer anid the turbulent toro, recovery FatteNa, Reynolds Siailitudd

•: * paratetet., heAt Flux, aMd toperature con•tail the ooutratin of
tho ini"vidual atc-iest, whlch ace as yet unknor. Thus, the probio

redues. to eatablilhine a rolationship between the ceuetntrtlo•t and
Sveoloity In the .aaftnr cublayer and the turb•l:ent core. The ro•t

oa thU4 relatilothip will be dittferent deopoding on theatche~Ieai
state of flow, i.e, on whether the flow will be stoeady, frozen o'

honiteady.

??I)-hC-23f-7



Steady flow of an ideallZ dissociating gas [161. We shall con-

sider the steady flow of an ideally dissociating gas. For later use,
we note that the difference between the enthalpies of the atomic and
molecular species may be approximately considered to be equal to the

dissociation energy. In fact, taking the fact into account that

we find

(4.157)

For such gases as oxygen and nitrogen, the approximation made In
(4.157) does not result in anry noticeable errors in calculations,

Making use of' Equation (4.157), we obtain from the relation
(4.148) the following expresaion for total enthalpy in the lam~inar

sublayer

+ ti -,) -( (4.158)

The dimer•aionless quantites 11U, I1T ana I are SIven by E4uatlon,
(4.117).

The liepold$ similltudle paoawtor UhA ad the "overy enthalpy
Hi* geftecaliy alvett by Equation0I (4-154) and4 M151~), bome

it vi11 be ocaalied that In EquAsions (•.19) and (4.160) the subtrIpt
r refit'r to partaeers caldulate" tor the ta44 vhen thaie 4- no heat

traanmez between the gat mi the vil,
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The expression for the heat flux (4.155) in an ideally disso-

ciating gas becomes

sq, .U,, e ) x
t +IJ(4.161)

4The total enthalpy in the turbulent core (4.150), in view of

-. EQuation (4.159), can be written in the form

(4.162)

A similar transformation oa the expression for the total
enthalpy in the laminar sublayer, (4.158), yields

+ (to-1*- 1 CX'4,-))ii (I P)-a 1X#A (4.163)

For Pr Le I** Equations (4.162) a~nd (4.163) re4uoe to Equation
Ut -114 of tho preceding section.

The4oen~oeof the atom$ onenrt o on the pressure and
ttmpraturte i In Whit ouse glven by Equation (4.115).

Lquutions 0~6,10 1160 (4.156) and (4.1$5) permit ud in

It~1 to ditatinto the dependtene of enthalpy, temperatulea
•naenr�&�ton on the velolty In the boundnry layer. However, for

ca~vofit~c*in oaltqtattons It to ustful to mtake oertain moditicAtiona.
$ubstltutlng the oxpre*sson f•r• the enthalpy h1, (4.74), Into the lo•t-

* ~hand lilde Of R440tion (1) trter slezplo algebra we obtain the
* r<iiowng1 equ4tion for the velocity I, in view of (4.115):

•. where¢
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ba Pr" + (Le - 1) CA-L)[+ -i ±.

Solving Equation (4.164), we find the dependence of velocity on tempera-

ture in the laminar sublayer

(4.166)

Similarly, substituting Equation (4.74) into the left-hand side

of Equation {4,162), we obtain, in view of (4.115), an equation relat-
ing the temperature and velocity in the turbulent core

fý 4i Cj - 0O (4.167)

where a is given by the first of Equations (4.165), and c has the
form

A- (4.168)

Solving Equation (4.167) fox U, we find a relation between the tem-

perature and velocity in the turbulent core

(4.169)

In Equations (4.166) and (4.169), the sign in front of the
radical is chosen to satisfy the condition < 1.

The determination of the concentration and temperature for the

flow around a thermally insulated wall is simpler than for a thermally
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conducting wall, since the coefficient a in Equations (4.166) and

(4.169) becomes zero. The value of the temperature at the boundary

of the laminar sublayer can in this case be found from the condition

(4.170)

* where the dimensionless velocity at the boundary of the laminar

* sublayer, (u), is given by Equation (3.31).
Pz

If the above computational procedure is to be followed, we must
be given the values of the parameters at the outer edge of the boun-
dary layer,(Ue, Tel pe), and at the wall, (Tw). The atom concentra-

tion at the outer edge, cAO, must also be given. Assuming that the
outer flow is in a state of equilibrium, cAe can be determined from
Te and Pe using Formula (4.115). The atom concentration at the wall
C can be similarly obtaired from Tw and Pe In the ease of thermo-
cheL.ical equilibrium, the occurrence of catalytic processes nn the

walls taking place at a finite rate, will obviously not influence the
distribution of concentration in the boundary layer.

The distribution of parometers in the boundary layer can Oe

found from the above relations by using the method of successive

approymlationo. As seen from Equations (t.165). the concentration at
the boundary of the laminar sublayer, cAt' is the quantity which will
ba approximated in the calculation. As the zero-order approximation

for ce , one can use the value ubtained ror Pr * o a I (see the pre-
ceding section). From the sano calculation we adapt the value of the
"1friction parameter 4 , which is necessary from the very beglnninh, to
determine the dimensionless velocty at the boundary or the laminar

aubl&yer, ( [Formula (3.31)]. In this ounneotion, we note that It
is not necessary to obtain a better approximation for i, -Ince a
slight deviation of the Piandtl and Schmidt numbers !'rom unity has
very little erfrot on the value of friction (c).
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After u 1 is determined, we use Equations (4.166) for 0 < u < u
and (4.169) for cu < U < 1 to establish a relationship between the

temperature and velocity in the boundary layer in the first approxi-

mation. When calculating the flow over a plate at zero angle of

attack, the values of the temperature Equations (4.165) and (4.168)

must be given in the interval ranging from the temperature of the wall

to the stagnation temperature. In calculating the flow over a plate

at a nonzero angle of attack, when the temperature at the edge of the

boundary layer may set equal to the temperature behind the front shock

wave, the values of the temperature must be given in the interval

ranging from the temperature of the wall to the temperature of the

outer edge. (In this case, the temperature in the boundary layer

usually varies monotonically).

Upon establishing a relationship between the velocity and the

temperature with the aid of Formula (44115), one can determine the

dependence of concentration on velocity, etc.

Given the distribution of concentration and temperature, we can

find the depondence of density on velocity (Equation (4.121)], and

thnen also the local friction coefficient (4.109). Given the friction

coeffcitent and the values of the parameters at the wall, boundary at
the laminar sublayter, and the outer edge of the boundary layer, we

canh use Equation 04.161) to calculated the hedat flu.

The PrAsidtl, Sctuidt, and Lewia nunbera tan be found for a given

atom cochraif t the Viail uslone the *~PrOX1#awe fumulac obtained
by Oran, (4.138) and (.139), sumi. Pr0 - 0.1, 3%O 0-.,

Let 1. .

wf I.In th~e neced"Ing subscetion it vat4 shown th~t, to .b1
case of frozien frlow In the inWandary layer (%ex1 0), and undejr tho

asswnptionl that t-he ;diAldt ntu#bet I* 04W41 t4 tanitb' we htvt A

paticular integral of the *_4uatioh fctvrain rf sp"ctec I

t. ........ . ...........
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(4.126), according to which the concentration depends only on the

velocity, i.e., CA = a (u). In the case of frozen flow along a flat

plate with the Schmidt number different from unity, we shall assume

* approximately that the concentration as before depends only on the

k. velocity, and does not depend on the longitudinal coordinate. One can

expect that for small deviations of the Schmidt number from unity,I
the dependence of concentration on the longitudinal coordinate cA (r)

-* will be sufficiently weak. In addition, we also make the simplifying

assumption (3.1) stattnz that the tr1otion stress is constant across
the boundary layer; t coitst. Tw.

SUs:';g these assumptlons, we obtain from Equations (4.98) and

(4•100) the f',ý1owing relation for the concentration in the laminar
sublayor and toht turbulent core:

s "a"•0"(4.111)

As the boundary condition on the concentration at the wall we uae

we~aston (4.65)0 anun*Ing that the order of the catalytic reaction,

a, t4 unity, After simple alrbrs, we write the exprec3ton in the

int#4ttin( uAtiofl (4.m) onco, in vivw or MotuaLto (4.iml, uv

ZlotgrAtlit4 (4A73) 0M~ dettmr~1nlhj the intetaingf-tn r4 h

t.he4 -4e00end-ce of 0"etato Vonvloeilty In the 4~

e - )* ' . . - . . . .



The derivative of concentration with respect to the dimensionless

velocity at the boundary of the laminar sublayer on the side of the

turbulent core, (dcA/dU)j = U + 0* will be found from the condition

that the diffusive flows of the atomic species in either direction

from the boundary of the sublayer and the core be equal:

t deA e
• -h.•÷o r.. ... •' 1,,.,,-o(4.175)

Using this relation and the condition at the outer edge: cA C cAe

at u U el we find tne relationship between the concentration and

velocity in the turbulent core

"•A -cA 4 ,(1-a). (4.176)

Equating the conicentration values obtained from Equationas (4.173) and

(4.176) at the boundary of the laminar sublayer, we obtain an expres-

sion tri. the atom ooncentration at the wa•i a* a function o. the

parameter of catalytic recombination, AW&

Cm + 'A. .77)

In obtaining the rolation 14.ltr), w made the a•ppoximation

Aaw4utng thAt St 0.k,, with tho valotity Zt randind frlvt 0.6 to

0.86, the eot~utatlogial erro.r when •omula (4.118) ia u aed doea not

exceed *10%.

Expreatins (4.114) and (41.76) Aly be tratarohmed to a feoM not

SonitaIfing the pareter of tatllytl.z leeombinatlon AW by eil~laatiln



this paramuter with the aid of Equation (4.177). After simple

rearrangements, we obtain

CA CA= ±- SC'/S(CAe -c AW).

C MCA, -- Sc-"/'(CA - CA,)( -0 ). (179)

The first of these equalities is valid in the laminar sublayer; the

second - in the turbulent core. When the Schmidt number is equal to

unity, the equalities reduce to the relation (4.126) which was

obtained earlier.

Formulas (4.174), (4.176) and (4.171) imply that for kw 0
(this corresponds to flow around an absolutely noncatalytic wall)

CAw c CAe, i.e., the atom concentration in the boundary layer is con-

stant over the cross-section and equal to its value at the outer Ždge.
For kw - (this corresponds to a flow around an absolutely catalytic

Aw
•i• wall) CAw = 0, i.e., all atoms that diffuse toward the wall become

recombined.

Using Equations (4.174) and (4.177), as well as the relations

(4.160), (4.159) and (4.161), which are valid in the case of a frozen

flow, we obtain expressions for the recovery enthalpy, Reynolds simili-
tude parameter, and heat flux in a frozen turbulent boundary layer on

a flat plate with arbitrary catalytic properties of the surface:

S +, , [3Pr"'± (Le'- i)Sc"'C/ ,Vj.4 ,

2...._ pr-(THr ,- )-Ix
0, (4.18o)

x [+ f3Pr"'-- K. + (Le'h -_)Sc"/ CA,

C r(4.181)

x [e + •Pr"' - + (Le'A'- 1)Sc"*CA,*. (]4.182)

In Equations (4.180) - (4,182) we use the approximation

i + (Le - 1)f, : Le%, ( 4.183)
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and introduce the function

(4.184)

It is easy to see that, for an absolutely catalytic wall (k + C)

the function w 1, and for an absolutely noncatalytic wall,

(kw = 0) 0.

If the effect of the catalytic properties of the wall on friction

(cf) and the Prandtl and Lewis numbers is disregarded, then using

relation (4.182), it is easy to obtain the expression for the ratio

of the heat flux (for an arbitrary catalytic recombination rate) to

the heat flux on an absolutely catalytic wall
qw

2U(Le'-)SC'CA(- (4.185)
it, +Pr'/2 - + (Le'A - 1) Sc'!'cA,ý . D --

Formula (11.185) allows us to estimate the effect of the catalytic

capacity of the wall on the local heat flux. Figure 67 illustrates

the result of the calculation based on (4.185) for air flow over a

flat plate. The computation was made for a pressure corresponding to

an altitude of 45 km above sea level and the temperature of the wall,

Tw = 7000 K. On the abscissa axis, we plotted the rate of catalytic

recombination and indicated the range of kw for a number of materials
(for more details, see Figure 58). Figure 67 shows that the catalytic

capacity of a wall has a very strong effect on the heat flux. This

fact permits us to conclude that a suitable choice of the material

used for spacecraft skin may significantly reduce the heat transfer

to surface. The fact that the curve calculated for the flight velocity

-'* of 2.5 km/sec lies below the curve for 3 km/sec is explained by saying

that nitrogen begins to dissociate after the entire oxygen in the

outer flow had already dissociated(8)

Footaiote (8) appears on page 270.
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k /sec poop

Figure 67

Next we shall establish a relationship between the temperature
and velooity. Substituting in the left-hand side of Equation (4.163)
the expression roe enthalpy or an ideally dis-3ociating gas, (.T,7)
and solving the resulting equation roe the temperature, we obtain an•
expression for, the temp~erature as a £unction of veocoity in the
laminar- sublayer:

Hlere c A and c.. are given by Equations (4.114) m id (4. 171).

Similar'ly, Equati:on (4.162) iean be oise tLo obt;ain thera•elatior.

between the temperature aind veocitey In thv turbulon core

* 44* •'(•l~(I"-Il

Hlere teA and cAw ar-e gi•ven by tquatlooa (4.176) andl (O-iM-
A-
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The dimensionless quantities He' hw- 8, T in Formulas (4.186)

and (4.187) are given by Equations (4.117) and (4.162).

Given the dependence of the temperature on velocity and Equation

(4.121), we can determine the dependence of the density on velocity,

which in turn enables us to calculate the local friction coefficient

from Formulas (4.109).

A convenient correlation formula for the friction coefficient of

frozen flow in the boundary layer was obtained by Dorrance [18] who

calculated friction for wide parameter ranges (10 < Re• 108; 0< M, 4;

0.04 < TT -I). The formula has the form

=i 2 ( t +A 1 (14.188)c/o l+CAw

Here cf 0 is the friction coefficient calculated without considering

dissociation (but considering the effect of the Mach number and the

temperature factor). The difference between the results based on

Formula (4.188) and the exact results does not exceed 4%. Formula

(4.188) implies that dissociation changes the friction coefficient by

no more than +223 as compared with c fo In addition, inspection of
Formula (4.188) shows that an increase In the catalytic capacity of

the wall (cAw * 0) leads to an increase in the friction coefficient.

Figures 68 - 72 give the results of calculating the boundary

layer characteristics according to the method presented above for a

flow of dissociating oxygen around a plate C19].

Figures 68 and 69 give the plots of the local coefficient versus

the Reynolds number for two Mach numbers: Me = 4 and Me = 10. The

rollowing values were used in the calculation: Te = 36000 K, Pe = 1

atm, Pr a 0.72, Le a 1.4, aAw * 0. Skin friction was calculated

without considering dissociation effects according to a method presented

In Section 12. As seen in the plots, the friction coefficients for

PTD-I(¢-23-723-71 ;5
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Figure 70 Figure 71

a frozen flow of a gas differ from the friction coefficients calcu-
lated for the same conditions, but in the absence of dissociation, by
no more than 20%, which is in good agreement with the results obtained

* by Dorrance [Formula (4.188)]. In the case of equilibrium dissociation,
the difference may amounb to 40%.

Figures 70 and 71 are the plots of the concentration and tempe.a-
ture versus the velocity in a frozen (curves A, B) and equilibrium

(curves C, D) boundary layer, calculated for the conditions:
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Me =2.2, Te = 36000 K, Tw 5000 K, CAe = 0.3, CAw 0. Curves A

and C, obtained by Dorrance [20], are also given in Figures 70 and 71
for comparison. The difference between curves B and D, calculated

using the methods of the present section, and Dorrance's curves A and

C, is due to the fact that Dorrance used the relation connecting total
enthalpy, concentration, and velocity which is obtained for Pr = Sc = 1
[Equations (4.114) and (4.126)]. Therefore, Dorrance's method is very

similar to the methods presented in Section 24. The deviation of the

Prandtl and Schmidt numbers from unity was considered by Dorrance only

in the expression for the Reynolds similitude parameter and through
the introduction of the recovery factor. It should also be noted that

in his paper Dorrance did not take into account the contribution of
the vibrational degrees of freedom to the heat capacity of molecules.

iq5 Figure 72 is a plot of the

- - / -heat transfer coefficient versus
/ / the Reynolds number obtained ac-

-. L __cording to the method presented

(frozen flow) for the conditions:

the of § 25 Me =2, Tw/Te = 0.1, CAe = 0.31
By emetod (ch- is plotted on the axis of

By Dorrance's theory ordinates). For comparison, the
•Bi l,LOExperiments of Rose et al.O of R e ,,I same figure includes a plot ob-

7Re. tamned by Dorrance (dashed curve).

Figure 72 The difference between the theo-

retical plots is due to both the

reasons indicated in the discusslin
of Figures 70 and 71 and to the fact that, in calculating skin friction,

Dorrance used a formula from the semi-empirical Prandtl theory, in

contrast with Karman's formula used in the present method. Figure 72

also includes the experimental points obtained by measuring heat
transfer on a cylinder with a spherical nose. The measurements were
done by Rose et al. [21] in a region where the longitudinal pressure
gradient was close to zero. The distribution of the experimental

points is characterized by a large scatter. Nevertheless, the agree-

ment between the theoretical results and the experimental data may be
considered satisfactory.
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Nonequilibrium flow of an ideally dissociating gas. The results

of calculating the equilibrium and frozen flows in the boundary layer,

given in the preceding subsections of the present section, showed con-

vincingly that the thermochemical state of a gas may have a substantial

effect on the drag. It is obvious that the flow in the boundary layer

assumes an even greater importance in heat transfer calculations. Of

course, it is possible to estimate the heat flux to the surface in

the two limiting cases considered in the preceding subsections -

namely, for steady and frozen flows. However, with the aid of the

methods presented in these subsections, it is impossible to analyze

the character of flow in the boundary layer. In many cases important

in practice, it may be necessary to estimate heat transfer with the

dissociation reaction proceeding at a finite rate comparable with the

* ', rate of diffusion, which results in a nonequilibrium flow in the
boundary layer. The nonequilibrium flow of an ideally dissociating
gas under the assumption that the Prandtl and Schmidt numbers are
equal to unity was considered in the preceding section. In heat

transfer calculation, as was pointed out many times above (Chapter III),

it is necessary to consider the deviation of the Prandtl and Schmidt

numbers from unity.

The general expressions for the heat flux qw, enthalpy of

recovery H., Reynolds similitude parameter 2 oh/cf, as well aj the

relation of total enthalpy to concentration and velocity for arbitrary

LPrandtl and Schmidt numbers, wore established at Lhe beginning or the

present section. To solve the problem in question, we must establish

a relation between concentration and vcloolity. It seems justified,

on the basis of considerations given in the discussion of nonoquill-

brium flow for Pr S o 1 (Section 24), and frozen flow for Pr 0
9 So 0 1 (Section 25), to make the simplifying assumption that the
concentration depends only on velocity in the boundary layer, and does
not depend on the longitudinal coordinate, i.e., A a CA(U). in

addition, we shall make the usual assumption that the friction Dtvasa

is constant across the boundary layer, i.e., Y • const 1 4 With

these assumptions, Equations (4.98) and (4.100) become, resp-ctively
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dLCA I i W JA 4

(4.189)

The first of these equations is valid in the laminar sublayer; the
second - in the turbulent core. Integrating the first of Equations

(4.189) and using the boundary condition (4.124), we have

_k, (4.190)

Here

4da. (4.191)

and A. is given by the second of Equations (4.125).

It should be noted that the oonnentration of the atomic species
at the wall$ (cw), is as yet unknown, and will be determined later.

Integrating Equation (4.1co) and determining the Integration

constant for conditions at the wall, (cA a aAw ror ' - 0), we find
the distribution ooncentration in the laminar sublayer

where

Now we proceed to determine tho concentration profile in the
turbulent cmire. Integrating the second ot Equations (4.IC9) once,

we get
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dCA A dx\ /

)w -,(4.193)

Here U is the dimensionless veloci' at the boundary of the laminar
"* sublayer given by Equation (3.31).

The derivative of concentration with respect to the dimensionless
velocity at the boundary of the laminar sublayer on the side of the
turbulent core, (dcA/d%)• = • + O, will be determined from the condi-

tion that the diffusive flows of the atomic species in both directions
-- from the boundary between the sublayer and the turbulent core

are equal, (4.175). Using this condition and Equation (4.190), we
i~i I •find

(4.194)

Subutituting Expression (4.194) in Equation (4.193), and perform-
Ing the reaulting integration, after determining the integration con-
3tant from the condition at the outer boundary (cA M 0Ae for 1 1), wo

ah•ial ihtain the distribution of concentration in the turbulent eonr'

cA~c,+I(1)4a)(a)(~cA~~a.)1.(4.195)

where

!1A

Equating the values of concentration from Equations (4.192) anM

(4.195) at the boundary between the sublayer and the turbulent core,
aiznd solving the resulting equation for concentration at the wall, we

obtain the following expression for it
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CA. - (+ ± Sc''A)- 1 x

X [cA,+ I(i)+ S c J (a,).+ (iO- a.,) I.()I l.) (4.196)

In deriving (4.196), we used Equation (4.178).

The concentration distribution in the laminar sublayer, (4.192),

and in the turbulent core (4.195), may in certain cases be conveniently

used in the form that does not involve the parameter of catalytic re-
combination Aw. Eliminating Aw from Equations (4.192) and (4.195)

with the aid of the Expression (4.196), we shall have in the laminar

sublayer

CA "A.+ SC'4(cA -C .) I + Sc"'[4(T) + SCI•I,)±
+ 0i. . .(;) Sc/ (1 ) (4. 4197 )

and in the turbulent core

CA -CAI _SC-4(. cA)( -CA )+ IT ()- 1,(4)-

- sc'/I1M + sc I(•.) (44A - a) + sc'a./, ()-) (4.198)

In the frozen flow (wA = 0), the functions Ith, I and I, become
zero, and Equations (4.197) and (4.198) reduc.e to relation (4.179) of

the present section.

The dimensionless integral quantities I and Ith[( 4 .192) and
(4.195)], appearin& in the concentration distributions, characterize

the total "power" of the sources of formation of the atomic species,
contained within a certain volume, whose extension in the y-direction
is determined by the limits of integration, and the base area may be

assumed to be equal to unity. The expressions for these quantities
can be obtained similarlj to the expression for the quantity I (u)

(4.136) in the preceding section. For this reason, leaving out simple

algebra, we shall merely state the expressions for these quantities
in their final form:

PTD-IIC-23-723-71



R.x, fj dA da (4.199)

U U 3P�"A ") h- -- (4.200)t,(a) --- Co.• ) . k, / d_,-T .
Un A

Here C is the friction parameter (3*8), Cr is the recombination
parameter (4.137), Rexw is the Reynolds number (4.137), dn/dý is given
by E quation (4.104) in the turbulent core and by (4.106) in the
laminar sublayer. The equilibrium atom concentration c(e) is given
by (4.68).

The quantity Iz (u), which in also necessary to calculate the
concentration distribution, is given by

1,0•) -. *-& -- .(4. 201 )

The velocity at the boundary of' the laminar sublayer, an
be determined from Equation (3.31).

The concentration profile can be calculated using the m.thoi of
successive approximations applied to Formulas (4.197) and (0.198 oc
to (4.192) and (0.195). The order of calculation remnain- the 3ame a•
In nonequilibrium flow calculations for Pr a So a I (see Section 24),.

In Equations (4.197) and (4.198), the rirst two toems on tlih
right-hand sides give the otontrlbution of dirrusIon to the !Il', -
tion distribution, and the remaining terms, containing I,, •
give the contribution of the chemical reactions to th dI Luti oa .
The mutual effect of diffusion and chemical reactions on Otch othV'
is manifested through the concentration at the wall eAw .
which depends on the rates of both processes. The Clow In the boundary
layer will be determined by the relative contributions of diffutlon

..... ..



and chemical reactions to the concentration distribution. If the

recombination parameter is Cr = -, the contribution of the chemical

processes will be infinitely large compared with the contribution of

diffusion (the sum of the terms containing the Integral quantities

in Equations (4.197), (4.198) will be infinitely large compared with

the diffusive terms). In this case, the flow will be steady and the

concentration distribution can be determined trota the condition wA a 0.
In the other extreme case, when the recombination parameter is equal
to zero (Cr a 0), the diffusion process will be the dominant factor
(frozen flow). Thus, the objective of the computation reduces to
establishing the role of diff'lslon and chemical reactions in the
tranvr processes in the boundary layer.

Given the concentration distribution (4,197), (4,198), it is

easy to obtain the expressions for the Reynolds similitude parameter,
recovery enthalpy and heat flux for a nonsteady flou in the boundary
layer. For this purpose, we use Equations (4.159) and (4.l16), sub-

stituting in them 0A1 a, &iven by (4•.197),

As a result, we obtain

4 W(R•( 9 -1)ta(.# + ++ it to OW C( 44 -e~ + 0t. - 4-' U L I)kSt14 t

+ Sc(&j+( -1) *44t,) -(- t)$c4o4+

4,S lkh(4)#+ (1;*- 4,444) ! i6 - (4A AU t*(J

The ccetaonat the wliZ In NiuAttfion 0~.102) v- 04,204) Is civen

by 9quatlOn ('i.196), And tht4e lnterl 4uLOAnrile lth#I1, It by
Equationst (4.199) - (4.*21). The substerlt r AP *,he Upresalon
(14.203) retort to couditions at A tbsncakly IWiaiated wall.



The distribution of enthalpy in the boundary layer is determined

by Equations (4.163) in the laminar sublayer and (4.162) in the tur-

bulent core upon a substitution of the concentrations as given by

(4.197) and (4.198), respectively.

The temperature dlstribution can be obtained from the enthalpy

distriburIloA by solving Eýuation (4.74) for temperature. As a result,

we obtain

?-(A+ cAY(DVO A)

Pwrthermoreb fqauationa (4-121) and (4.109) can bia usied tv, 4et1-r-

mine the denity in the boun-Aary layer and the loc&l rrittlan coot CV-

eient At the wail.

Piuro 73 gv' t'e, rvnul~t*

of dculatlntd In

S"~. -t" . "• ;

4n thwi4e wIthte'M h~i-4~

-. at oth vtjrtn tci4-rsedAtin

VI- vgtloet IL * 1W gt or the

.t 2

<p

pwts'r, ,4, to,,p•.. tut.. 5. th .

at.zr* eta'as) I" to ef4uai t&r uf
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r arve* urisw iano th tmei4b ory
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[I

differs from the catalytic recombination parameter Aw used in the

present section [see Formula (4.125)] in only an additional factor

(Aw1 Sc 2$ 3 Au)).

It will be recalled that the value Awl = 0 corresponds to flow

over an absolutely noncatalytic surface, and the value Awi - * to flow

over an absolutely catalytic surface. The value of the beat flux for

a steady flow in the boundary layer (dot-dash curve) was determined

using Formula (4.161).

It will be noted that the values of the local friction coeffi-

cient, which are necessary for calculating the heat flux fron

Formulas (4.161), (4.182) and (4.204), were calculated using a method

presented in the preceding section (i,e., under the assumption that

the Prandtl anJ Schmidt nusbers are conutan. a•nd equal to unity).

The metho'4a of calculating akin friction and heat transfer in

the turbulent bot-ndary layer of a diasociating gas, presented In this

c:hdpter* *re wasily soot% to be an extension of the aethod3 used inI
t~he tht-ory of .4on=agoncoua eas itlow, presentc-d In Chapter III
(anctiwon 12 bnd 15). At thl uge tite, One can point to a nwumbor of'

papers *"rItten by $*Otit ind foreign voilters in whicah the approach

to tht prioblwu of the turbulent boundAry kayor ito a dissociating Caa

differo to 4 Cgreater or l0440i' degrn tro~f the ApproAch Used In this j
I'M eS40 t e4uiiittl"~ iaeocia1ti~fn Int, turbulent boundarY

Kocah,,Arv W)l. Thoir analysis, Vta bait" 4n a cscdcl1 of att ideally

Git~iaitgsat And Oft thetaiepreaP-~t theory. The

be #qU41 to unityt. S. 1. KO'stetlib ad 11u. A. gesh31""aro' *ethol 1r;
largely staliat' to tho. aethLod Uaded 2A2etin

c;p,-' - *--A&.~~
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The effect of equilibrium dissociation on skin friction and heat

transfer on a flat plate for the Prandtl and Schmidt numbers different

from unity was discussed in the paper by I. P. Ginzburg [23]. The

calculation of friction in that paper was based on the semi-empirical

Prandtl theory.

The method of calculating skin friction and heat transfer on a

flat plate in equilibrium and frozen flows was proposed by Dorrance.

The basic features of this method and some of the results of the cal-

culation were discussed in Section 25 (see the footnote on Dorrance's

paper).

Heat transfer from a nonequilibrium turbulent boundary laver to

a catalytic surface was calculated by Kulgein [24]. In this paper,

the deviation of the dissociation process from equilibrium was taken

into account only In the laminar sublayer, and in the turbulent core,

the flow was assumed to be frozen. A computer-assisted calculation

of heat transfer was made for various conditions of flow in the external

stream and at the wall.

The methods of calculating friction and heat transfer in &n

ideally dissociating gas presented in Sections 24 and 25 (for a binary

mixture of atoms and molecules) can be easily extended to the case of

a flow of a multicoinponent dissociating mixture. It is for that

reason that Section 25, in particular, gives the expressions for total

enthalpy, Reynolds similitude parameter, recovery enthalpy, and heat

flux in a multicomponent mixture, The computation of the concentration

fields for steady and frczen flows in a multicomponent mixture is in

princirle no different from the calculation of the same fields in a

binary mixture. To calculate the nonequilibrium flcws of a multicom-

ponent mixture, data on the mass rates of formation of species,

presented in Section 20 of Chapter IV, must be used.

The method, can be easily extended to the flow of a partially

excited dissociating gas whose properties were described in detail in

Sections 20 and 21.
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Finally, in the approximation used in Sections 17 and 18 making

use of the formulas obtained in Sections 17, 18, and in Chapter IV,

it is possible to calculate skin friction and heat transfer in the

presence of a longitudinal pressure gradient. The necessary expres-

sions for the integral thicknesses and the form parameter H* are given

in Section 23.

An almost complete lack of experimental data on the character-

istics of the turbulent boundary layer in a dissociating gas prevents

us from estimating the accuracy of the computational methods presented.

Nevertheless, the good agreement between the theoretical and experi-

mental data in the absence of dissociation (Chapter III) leads us to

hope that the methods of Chapter IV, which are an extension of the

methods of Chapter III, will also give satisfactory results.
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FOOTNOTES

Footnote (1) on page 186. For more details about thermodynamic
propertles of gases at high tempera-
tures, see the monograph: Zel'dovich,
Ya. B., Rayzer, Yu. P., Fizika udarnykh
voln i vysokotemperaturnykh gidrodinami-
cheskikh yavleniy (Physics of Shock
Waves and High-Temperature Hydrodynamic
Phenomena), Fizmatgiz, Moscow, 1963.

Footnote (2) on page 18 9. Figure 56, prepared by Hansen, has been
reprinted from the book: Dorrance, W.H.
Hypersonic Flow of a Viscous Gas, 1966.

Footnote (3) on page 199. See the paper by M.S. Zakhar'yevskiy
which was already cited in this section.

Footnote (4) on page 200. A presentation of the theory of the
absolute reaction rates goes beyond the
objective of the present book. Thosem Iinterested in the theory are advised to
consult the monograph by Glesston,
Leidler, and Eyring, which was already
cited in this section.

Footnote (5) on page 200. Concerning this question, we recommend
the paper by Rosner which contains a
summary and an extensive bibliography:
Rosner, D. Convective Diffusion as an
Intruder in Kinetic Studies of Surface
Catalyzed Reactions, AIAA J. 2, No. I
(1964); Russian translation: Raket.
Tekhn. I Kosmonaut., Nov. 4, 1961.

Footnote (6) on page 234. The principle, used here as the basis
for our analysis of a nonequilibrium
Vlow, might be called (by analogy with
the well-known principle, introduced by
L. Lees in the theory cf the laminar
boundary layer) the principle of local
similitude for the turbulent boundary
layer. According to this principle,
the concentration and temperature
(enthalpy) profiles are similar to the

"* velocity profiles in each section.
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Footnote (7) on page 237. The calculations were done at the
request of the author by 0. K. Zakharova.

Footnote (8) on page 254. A similar result was obtained for the
laminar boundary layer near the front
stagnation point, as reported in
Goulard's paper quoted earlier in this
chapter.
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"CHAPTER V

TURBULENT BOUNDARY LAYER WITH MASS TRANSFER
BETWEEN THE GAS AND THE SOLID SURFACE

§ 27. Introduction

In Chapter III and Chapter IV we discussed the properties of the

turbulent boundary layers which are formed on bodies of various

shapes, in the absence of mass transfer between the gas and the solid

wall. When bodies move at very large supersonic velocities through

the dense layers of the atmosphere, the processes of mass transfer

between the gas and surface begin to play an important role. Strong

heating may lead to a change of' the state oV a solid body: to itu

melting, vaporization, and the subsequent removal of the surfCace

material by the gas flow. The first data on mass transfer for bodies

moving at very large supersonic velocities were obtained more than

forty years ago as a result of studies done on the motion of meteors.

In recent decades, interest in the problem has grown even more due

to the advances in rocket and space technology. The phenomena which

occur when moving bodies are heated to very high temperatures became
the subject of extensive experimental and theoretical studies. One

of the most important results of those studies was the conclusion
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that it is possible to use special ablating coverings in order to

thermally insulate the front portions of rockets and spacecraft. At

the present time, it has apparently been accepted that the heat

protection of hypersonic vehicles by means of ablating coverings is

the most effective method from a weight and design standpoint. Mass

transfer plays an important role in cooling the walls of combustion

chambers, supersonic air scoops, nozzles, rocket engines, etc.

Heat protection coverings are widely made of construction syn-

thetics, synthesized on the base of thermoreactive phenol-formaldehyde

and epoxy resins [1]. With respect to resin-reinforcing fillers, use

is made of textolite, glass-textolite, asbestos, chromium, high-melting

oxides of magnesium, aluminum, nylon, Terylene, and other materials.

Materials that decompose at relatively low temperatures (up to

10000 K) are of great interest today: teflon kapron, polyethylene,

organic glass. When heat protection coverings made of tbese materials

undergo decomposition, the boundary layer becomes'filled with gases

of various molecular weights, which in many cases leads to a strong

"blowing effect" that reduces the heat flux to the surface. By now a

great number of various heat proof matev'ials have been investigated

and applied. However, regardless of the diversity of these materials,

it was noted that heat protection coverings decompose basically due

to the following physical-chemical processes: surface pyrolysis of

the binding depolymerization, vaporization, sublimation, conbustion,

melting, erosion. In a majority of cases, the rate of combustion of

the coke residue of the binding resin is used as the defining rate

of decomposition, of a synthetic covering. Removal processes in the

liquid phase may play an important role if a covering has a large

percentage of quartz and glass fillers. An example of such a heat

protection noveringis an asbeatos-textolite covering in which the

following processes are observed upon heating: cokling, dehydration

of asbestuo, chemical interaction of coke residue with oxygen and

nitrogen, sublimation of coke residue, flow of melted silica fiber

(SiC2 ), vaporization of melted SiC2 . The result of all these
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processes is that the composition of the gas mixture in the boundary

layer becomes very complicated [2]. Depending onthe conditions, the

mixture may contain the following components: 02, 0, N2 , N, C, 02,

C3, CO CO2, CN, HCN, H2, H, Si, SiC, SiO2 , Sc, SiC2 , Si 2 C and others.

The process of surface decomposition through the mechanisms

indicated, all at the same time or some of them, has come to be

called mass removal. One Of the possible mechanisms resonable for

mass removal is illustrated in Figure 74, a.

Externw stream " External stream

Boundary layer Boundary layer

Coke vapors1  Ga8 blowing

-- Zones of thermal ..I4III4 ..VV-Ir

--structuralreactions Las reservoirsj

a) b)

Figure 711

In certain cases, a surface may be cooled by forced injection of
a substance into the boundary layer through the porous wall (Figure
74, b). One may use air, water vapor, light gases (bydrogen,
helium), and other gases and vapors [31 as the cooling material in
porous cooling.

The presence of lateral mass flow in the boundary layer, caused
by the injection of mvss through the porous wal], sublimation of a
solid surface, or vaporizatior of a liquid film, has an effect on
the structure of the boundary layer, (,,eloclty, temperature Pof.les,
etc.) which is proportinn.l to the intensity c" tho flow. Along wit'h
the change of the local characteristics of the boundary layer, Ita
integral characteritics are modified. In particular, the inJeecion
usually leads to a reduction of friction and neat flux on the wZl.
1Exceptions may occur only in those cai.ez when the mnasA injevted Intn
the boundary layer reacts chemically with the crmponentj o!f the
fundamental flow, and the heat thus released may In the final atnly"!.i
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result in an increase of heat flux on the wall.. The phenomenon in

which friction and heat flux are reduced upon the injection of mass

into the boundary layer is sometimes called the "blocking effect".

The present chapter will be devoted to a description of some of

the phenomena mentioned above and to a presentation of the methods

of calculating friction and heat transfer for the case of mass

injection into the boundary layer. We shall discuss flows near a

porous (or sublimating) plate immersed in a supersonic gas stream,

; with no chemical interaction between the mass injected and the gas of

the fundamental flow.

In conclusion, we note that a solution of this problem, either

of an experimental or theoretical nature, is still far from realiza-

tion. In fact, only the first few results have been obtained. Many

* theoretical and experimental aspects of the problem remain unclear.

In view of this fact, it seems advisable to give a brief survey of

the basic approaches used in this area of the theory of the

tvrbulent boundary layer,

9 28. Basic Trends in the Study of the Turbulent

Boundary Layer with Mass Transfer

Between the Gas and the Surface

This area of investigations has developed primarily during the

past ten to fifteen years. An acquaintance with papers related to

this area proves that the development has followed the same paths

an the development of the Jheory ol' the turbulent boundary layer in

a compresot.ble gas in the absence of mass transfer between the gas

and the surface (some results of these investigations) were dicussed

in Chapter III). Similarly as before, there are three principal

trends: Ql) semi-emplrlcal, based on a generalization of the Prandtl

and Karman Formul.as, (,.6A) and (2.69), to the flow of a compressible

gas with mass trarsfer between the gas and the wall (thia approach

may also be characterized ao one us4ng the logarithmic velocity

profile,; (2) semi-empirloal, baaed on power-law velocity profiles.
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(3) empirical, based on direct use of experimental data.

Thus far, the first approach has been followed the most. In a

majority of papers following this approach, the following expression

for the friction stress in the boundary layer is used

T T. + (PV)wU. (5.1)

Here (Pv)w is the mass flux at the surface of a body.

Equation (5.1) can be easily obtained using the following simple

considerations. We expand ( - w v wu) into a Taylor series

V A - Pw+..(t. V) 0) + [T - PwVU1 4 +

Noting that the equation of motion (2.52) for a flat plate apd the

second of the boundary conditions (2.73) imply that

0.

we arrive at Equation (5,1). The fact that expression (5.1) is

used for the fi'ictioto stress means essentially that we assume the

mass flux in the boundary layer zo be constant

pv=cos •, V)w.

Equation (5,a), as can be easily seen, leads to invalid resulta at

tile outer edge of the boundary layer, where we muse zatlsfy the condi-

tion T • 0 for u m U

The actual character of* the friction stvo:s distribution in the

bountlary layer with mans addition may be neen in FIgur<' 71 tI"J, which

shown the results or the friction meanurements for various values
of the injection parameter B, defined by

i.!:5.2)
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The distribution of the tan-

1 "8=0 -° gential stresses was given .in
0

I Figure 75 as a function of the
-• dimensionless distance from the wall

y/6, where 6 is the thickness of the

boundary layer. It can be seen from
7 •the diagram that in the absence of

mass addition (B = 0), the maximum
of the friction stress i will occur

,ilw at the wall. With an increase of
the injection parameter, the friction

Figure 75 stress at the wall decreases
noticeably, and in the boundary

layer It noticeably increases, attaining a maximum in a region
adjacent to the wall. The same results, given in the form of the
relation x/iw Q f(;), are shown in Figure 76. We can see that in
the region ý < u.5 the distribution of the friction stresses is
described well by Equation (5.1) (dotted straight line) written in
the form

T'~~t # (5.3)

Diaregarding the fact that Equation (5.3) poorly describes the
distribution of tangential 3tresaev in the outer region of the
boundary layer, It turnu out to be fully applicablv In the calcula-
tion or' the Integral characterlitico of the boundary layer (friction,
diaplaeement and momentum lost thlcknes-aoa, ete). Thlu can be
explained using the same conkiderationj aa those preeonted In Section
10 because of Equation (3.1).

Using Equation (5.i), the Prandtl and rKman formulas, (2.69) and
(2,69), may be used to obtain the followlir expreagions Ctot the
velocity profiles3 In the turbulent core of' the boundary layer:
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*-Here C 4, C, C6  r the constants of Integration, and q and C are
giver, by Equations (3.8).

whnIt is not hard to see that,

10 'S0, henthere is no injection (B 0),
* *5~5Equations (5.4) and (5.5) reduce to

*41QXEquations (3.6) and (3.7), respec-
- - -tively, which gives the velocity

- profile in the turbulenz core on a

4 ~nonpermeabloQ wall.

Equations (5.4) and (5.5) 1na4#
a v v q tbrespectively, to the following

expresaions for the mom~entumtiloaa
Figure T6 thoitkneasO(.76).

In thg lib tteflý'o Iut~e*tton (P a0) EquAtol (5.) ad (5.1) e.Iputc

to Equation# (3.9) an4 (3.1-0) npna~ttv#y(1)

The differeonc#3 imonC the paptrA wvrttte zby VArloir worý-erý ire'

* ~~~~usu4l1y Meated to thc dtetrminatkon or the osarsc

C4, ý., tin4 to the tw-thvidn of val~uatime tho 1AntWPrA1 tsin t I

($.") a144 (57 ýOne of the irsrt paptvi4 Aotan n ntnay

or the ttntulent lvsundary layeor on a vortud pilate wvith ad4It~ton

Ma43 of' the' dame phson-hlla ropvrtlesl ao thoise or the gar r
the Oneln'ns; 10lo0W, want M'ltte,0h by tborrmanci and tk-re(5>Th
volocitoy profile !n that Vpapr v4In dvte~tinel cn the VnvrI5 or thc

Footnotes (I) ind (?) arpear en praie



Prandtl formula [see (5.4)] under the assumption that the distribution

"of tangential stresses in the boundary layer is described by Equation

(5.3). The friction coefficient was found using the usual method with

the aid of the integral momentum relation (2.80), which in the case

of a flow over a flat plate becomes

-• (I + 11). (5.8)

The Dorranee and Pore method was extended to the case where a aub-

stance with prop.rtiea different from those of the oncoming flow was

added to the boundary layer, by V. P. 4otulevich [6]. Later V. P.

,ttulevieh extended thi? method to the case of the sublimation •C

the plate surface, at the time improving hias computational procedures

L. Ye. Kalikhman [(8 inveot ated the turbulent boundary layer in

an incomtpreasible fluid with tho addition of Rasubstance with the

aame phyuical prvoprties as thosik of thig cat flowflw over the surface.

Ho gAbtAined a solution on the buasi of the t -miia Prandtl
thery (,.&) . h dry cond'Uti; at the wM1, .imIlar to

t io In the bou.dary Iay#P o C a trPe Amin hich i4

*euiVai4;4t t1o * 4imif that thret I4 no larsInAr dublsyr near the

walf".

Th ~ ~ -b 1taýtf @ it4r~t -1r tte VPAnd4tl A.nd teWli O*Ocbrs- on

tkin CricWt;4 of I tkAL piaeo uilth IweL~threvehthe VIt'49

* n~ill ot t!UdýAtaroe Inr dtv ot4ti ntet#dt

flow %fl5 ttAIPudi141 the papePv Vy 44. P. fs~c .t~hrhno

Anid Ut. 1. 01odv-vati

An "'rlct o the probl1-6 11ý ujei~ nthe Vrsi o th-O

t ~tlnS Vr~tlml and heoat krtira er i-iw tgan bV on in th* pap~efl

bj S. S. )Kutate-ladre aV44 A. 4. -entevet1. (1-9-.

I ht eie~~i~ thiiwry ")- the kt';iulvtnlt.t heu#-A~br layer on a
chencall 'ei'h'abh~tV ul-faCQ 'a-A t&el )! $ Pe*1i5044 Eta)

atr4 applied tP a-blat~n.h{ ": eraodecrfe
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The second approach, based on power-law expressions for velocity

profiles, has not been pursued to a great extent. Among the papers

using the second approach, we shall mention one written by V. D.

Sovershennyi [12] in which - in addition to a flow near a porous

plate - he discussed flow on a permeable surface with a small

longitudinal pressure gradient.

The empirical theory of friction and heat transfer on a porous

plate with injection of air into air was proposed by V. P. Mugalev

[13]. The method is based on the similarity, established by the

author experimentally, between the flow with a longitudinal positive

pressure gradient and the flow on a porous plate with injection.

The similarity is seen in the velocity profiles in the boundary layer

for the flows indicated above. Introducing the form parameter fw =

(P•'wiUc)l• ** ".Z3, V. P. Mugalev brings the integral momentum relation

to a form allowing its linearization, similarly as it was done in the

well-known L. G. Loytsyanskiy method [14]. The rest of the compu-

tation proceeds in the same way as in the case of a boundary layer

with a longitudinal pressure gradient.

The empirical theory of heat and mass transfer on a flat plate

in the presence or absence of chemical reactions in the boundary

layer was developed by Spalding, Auslander, and Sandarom (see their

paper, already quoted in this section). Their method is tc an

extent similar to Spalding and Chi's method of calculating friction

on a nonpermeable plate, discussed in Section 14. Just as in the

latter case, in the paper in question some of the determining

functions are chosen on the basis of an analysis of the semi-empirical

methods of computation, and others on the basis of experimental data.

As an aid in the computation of the drag, heat transfer, and

consumption of the cooling substance, tables and graphs were con-

structed for Mach numbers ranging from 0 to 12, and the temperature
factor (T w/T,,) ranging from 0.05 to 20. The cases considered

involved injection of air, helium, and hydrogen into the air. For
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hydrogen, two groups of tables are given: one in which combustion

was considered, and the other in which it was not.

It will be noted that Spalding, Auslander, and Sandarom's paper

also contains a detailed analysis of many semi-empirical methods

as well as an extensive bibliography.

§ 29. Experimental Investigations of the Turbulent

Boundary Layer with Mass Transfer

At the present time we have at our disposal a fairly large amount

of experimental data on the effect of injection of various gases on

the characteristics of a turbulent boundary layer (velocity and

temperature profiles, friction, heat transfer, etc.). A majority

of the experimental data were obtained for floas without longitudinal

pressure gradients (plate, cone)(3). Unfortunately, great technical

difficulties in conducting such experiments have in many cases

resulted in significant errors (up to 100%), which is indicated

by the large discrepancies in the experimental points obtained by

various workers for the same conditions. The basic experimental
method of determining local friction had for a long time involved

measurements of the velocity and temperature profiles. More

accurate direct methods of measuring local forces of friction with

the aid of a "floating" element, used extensively in the investiga-

tion of flows on nonpermeable surfaces (see Section 11), are still

very imperfect. In a number of papers, the accuracy with which

various characteristics are measured is insufficient. These circum-

stances resulted in a situation in which the effect of individual

parameters on friction and heat transfer still is unknown, and in

certain cases, the experimental data obtained by various authors are

contradictory.

In the present section, we shall mainly discuss the results of

the experimental studies of the boundary layer characteristics, with

Footnote (3) appears on page 321.
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injection at supersonic velocities. The experimental data for sub-
sonic flows will usually be given in summary diagrams.

S.Pexrm (4)
V. P. Mugalev's experiments V. P. Mugalev obtained extensive

data on the flow structure in a turbulent boundary layer with
injection, and on the effect of the individual parameters (Me, Rex

numbers, properties of the injected gas, etc.) on heat transfer.

The experiments included measurements of the velocity, temperature,

concentration, and density profiles in the boundary layer, and of

heat transfer on a flat porous plate, for a wide range of flow

parameters and injection intensity.

Figure 77 gives the velocity profiles for conditions involving

addition of air to an air stream moving at a subsonic velocity

(U 51 m/sec). We can see that, as the injection increases, theS~e
velocity profiles become deformed and less solid. For a large

intensity of injection (v w/Ue > 0.02), the profiles undergo an

inflection, and the derivative (au/By) tends to zero. From thisw
variation of the velocity profiles, V. P. Mugalev concluded that

for moderate injection intensities (up to an appearance of an

inflection point), the effect of injection is similar to the effect

of a longitudinal positive pressure gradient, and for larger injection

intensities, the velocity profile becomes similar to a jet profile.

II'

4XS

~~~ 4 8 8 ?
42 -

Figure 77

Footnote (4) appears on page 321.
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Figure 78 shows the velocity and temperature profiles, obtained
under identical conditions (Me = 0.08) with air injection. On the

axis of ordinates in this diagram we plot Y/Y and Y/Y twhere

.... / and Y and Y are the coordinates of the boundaries

of the dynamic and thermal boundary layers. The injection parameter

B** is given by

B•.. P~v,. .o,25 T,•,

A comparison for the velocity profiles and the stagnation temperature

gradients shows their approximate similarity. At the same time, for

large values of the injection parameter, heat transfer is somewhat

greater than momentum transfer.

•.4 44 44 '; /
047.

Figure 78

In Figure 79 a similar comparison was made for the velocity and

relative concentration profiles in the boundary layer for injection

of carbon dioxide into the air stream, also obtained under identical

conditions (Me = 2.5; T w/T * 1.1). We can see that the velocity

and concentration profiles are approximately similar.

Thus, in this case, we may conclude that injection of gases into

a boundary layer has a similar effect on the velocity, temperature,

and concentration profiles. At the same time, the author notes that

there does not exist any similarity between the profiles indicated In

the case of injection.
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•!•.Figure 79

Measurements of heat transfer were made in the wind tunnels with

S~injection of cold gases (helium, air, carbon dioxide, argon and
krypon) into the boundary layer. The Mach and Reynolds numbers

varied within the intervals 0 < Me _ 1 .

temperature factor Tw/Tr varied for 0.5 to 1. The heat transfer

coefficients for transfer to porous surface were determined on the

basis of the heat balance equation from the measured values of the

• temperatures of the injected gas at the wall, flow rate of the
• injected gas, and the external flow parameters.

The results of the experiments in which the effect of injection

on heat transfer was measured with addition of various gases and for

various Mach numbers of the external flow, are given in Figure 80

[i - helium (Me -- 2.5); 2 - carbon dioxide (Me = 2-5); 3 -argon

(e=2.5); 4 - krypton (Me 2.5); 5 - air (Me 0); 6 -air(M

2.5); 7 - air (Me = 3.7)]. According to the author's estimate, the

maximum possible experimental error did not exceed 10 -40% for

(M /M bBh0 0.5 - 5.

1 2 h_

On the basis of the data given in Fne ure 80, we conclude that the
variation of the parameters M Re., and Tw/T0 in the range

e w r

investigated does not have any effect on the criterion relations

injected g a an and external f (pr r ).
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- [Here Bh = (Pwvw)/PeUech;

.°J . ! I o (PwVw)/PeUe (ch)BhL~zsI" . .. " a'•:. ..''i •' 4 h = 0
q , (qw)Bh are the heat

6111 I., , fluxes to the wall in the presence

and absence of injection, and

0,I T= idem].

I_____ i - __On the basis of an analysis -

3 1 ' 8 4 s .8
/!,41•, of the experimental data on the
I- -/ 8A71 *2 1' effect of injection on heat

Figure 80 transfer, V. P. Mugalev proposed

a simple approximate formula

for heat fluxes

2 09(, ) 1 O. (5.9)

Here M1 and M2  are .the molecular weights of the gas at the outer

edge of the boundary layer and of the injected gas; b = 0.35 for

0.2 < (M1 /M 2) < 1; b = 0.7 for 1 < (M1 /M 2) < 8; b 1 for (M1 /M 2

14.5. The approximate Formula (5.9) is applicable for 0,1

Pappas' and Okuno's experiments [15]. These authors investigated

the dependence of the mean friction h',-t irare•'er coefficients, as

well as of the recovery coefficient and the Reynolds similitude

parameter on the injection of air, helium, and freon-12 through

a porous wall of a cone with a 120 angle at the vertex for the Mach

numbers of the air stream (on a cone) 0.7; 3.67; 4.35 and the

Reynolds numbers on the order 9.5.106.

The results of the measurements made by Pappas and Okuno are

given in Figures 81 - 89. The following notation is used in these

figures: cF is the mean friction ooefficient; aH is the mean heat

transfer coefficient;B ,, is the injection parameter for
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a supersonic flow; j,(,,=C2p,,v~.. g(cF)sB- is the injection parameter for

a subsonic flow; Ue, Pe is the velocity and density at the edge of a

boundary layer; Me is the Mach number at the outer edge of the

boundary layer (in the case of a subsonic flow Me - M); r =(Tr -

Tw)/T* - Tw) is the recovery factor; T is the recovery temperature;

T* is the stagnation temperature in the outer flow; Rex = U P X/e0e e eeis a Reynolds number for a supersonic flow, Rex U,,Pjx/u is the

Reynolds number for a subsonic flow; x is the distance measured

along the cone. The subscript "zero" refers to the parameter values

in the case of no injection.

Figures 81 and 82 are plots of cd(cr)u. on a thermally insulated

surface versus the Mach number for various values of the injection

parameter BF0.

In addition, Figure 82 also includes the experimental point

obtained by Mickley and Davis (16), obtained by measuring local

friction on the basis of the velocity profiles on a plate in incom-

pressible fluid. Inspection of Figures 81 and 82 enable& us to
conclude that the Mach number at the outer edge of the boundary layer

has a substantial effect on the ratio cr/(cr)a#-. This effect increases
with an increase of the injection parameter BFO.

Figures 83 and 84 show the results of the measurements of the
heat transfer coefficients for various injection intensities of

helium, air, and freon-12, and for Me *3.67 and 4.35. The same
data for helium and air, supplemented by data for M. a 0.7, are

shown in different coordinates in Figures 85 and 86. Figures 85
and 86 make it clear that for Me ranging from 0.7 to 3.67, the

effect of the Mach number on the ratio ( is small, which afrees
with the data obtained by V. P. Mugalev considered above. For Me

in the range from 3.67 to 4.35, the character of this dependence
changes sharply, which is in disagreement with other results
available, as well as with the results obtained by the same authors
in the interval 0.7 ! Me < 3.67. Figure 87 is a plot of the
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Rd 43

Air injectiot

Srecoveiyure 86
Helium injection 2 es?~r:

recoeryfactor rvru h

F'igure 85 injection parameter ror the

Hach numbers 0.7 and 4.35. Aa

can be seen from the diagram, for the Mach number 0.7, the recovery

factor for air and freon injection decreases with an increase in

the injection intensity. Por helium injection, it first increazes

up to 1.25, and then falls orf. Vor % - 4.35, the reovery factor

tirst decrease* for all injected gase3, and then booomea laror.,

The fact that the valuez of the recovery factor exceed unity is

particularly striking.

Figurese 88 and 89 reprsent olots of the RoynolI4 aiilitud& p4-

V:'.cAr 2011/0 versus the injection intef..41ty of air atw hnld u f

varioua Nuoh numbers. We note the character of th• varlation of tho

Heynoldi similitude parameter for helium injoction ((PIpt 80 ) At

atiperaonic velocities. Pirtt the paraaeter inceases, 4ttainitn

"a maxitku equal to 1.35, and then decreaset noticeably.

An analysis of the experimeentul data obtain by Vappao MWd Oun•

sihowa that an injection of a aubstance into the boundtr 1;4yr 1ea04

to igilficganht chance In the 0haretertittcc Or the boufintit

L layktr. Noroover, tht charlater of the vsrlt'ior 4uCt .'fl.-.t.•
a# tho tvcovory factor And tho Rleyttol•t o•l~lituat parnoot p dr t*"lWagnlIfteantly fNe the behavlor ot theoe quantities Ahen tetv Is

no Injection.
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a Figure 88

Fuga-roi and Sa~dah'a
Figurer87 ents IT). The paper by

Pacaroli and Saydab contains the
rQu4kt3 or a hyperaonic wind
tunnel inve'stlgation oflP the

4$ effect or air injection on
4$ -~ - frition and heat transfer In a

-- turbulent- boundary layer on a
po~roua Conte at 1441eh numbers *VA-4140 to 5.3 andi 8.1 on the aone, cod
for a variation of the Injection

** 1 .~,jJ~-pug~, ltparacetor z4=to 0 to

20. The walrangl# at the vertex
of the Oahe wac 7$

Plipr 90 1*A plot or tho
~t -ratio of heat flux vith injettion

oV to neAt flux without inj#Otion
- venust- the injoetion paractete o

ou, top, r

at the edee of bh oundary layer.

P1~ue 90of other workers poinota in the
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To a first approximation, we can apparently assume that the Mach

number does not have an effect on heat flux. The curve given in the

fii'ure was calculated using the following approximate formula:

ESxoerimentall data obtained by other authors. Figure 91, adapted

from Mash's Daoer(5, is a summary plot of the experimental data
obtained by various authors who measured skin friction with inJ,;ctton

(v* Is the dynamic velocity). The same figure Includes a curvt

calculated using the formula

£quation (5.11) was obtained by Mash as a generalization o0' thq

Turcoatte formula [18J introduced for an incompressible fluid.

Examination or the above experimental resultk of Injection or

vtrloug giabsutancv Into a turbulent boundary layer enables us Fa

draw the following oonclkons.

tojettion or' a subttantt into a boundary layer lowers Akin
frict•in and heat trndofer on the surfaee, An inject•on or liht

-ase hat the greatost offect.

Tho velocity profilec in the heundary la4er underga :istortlo

upon Ij'Wction, beocn0ina 'ess 4olid 4s the inWtensty oat injction
*hoofrease. Pare~t'h'' inAsnjectIon, ant inrtlctlo'n Point APPOetirt ot

tho vltbcýty prdClle, and the Profiles LhetaselvOS resemble Jot

Injection of' various, gases into the boundary 14yot- may have k
trout effect 0n tile recoovety factor and the Herynolda #I'tllMude

Pootuot• (5) appeCa' on p,1e 92.
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transfer between the surface and the gas can be written in the

usual form

J=0, Ci ý 1J . for Y 0;
--u U, cj =c., 1=14 for y-0. (5.12)

The boundary condition for the normal velocity component at a
S "permeable wall has the form

., P'= at Y= 0 (5.13)

A in contrast with the condition v = 0 at y= 0 at a nonpermeable wall.

The surface of a plate is usually assumed to be semipermeable, i.e.,

permeable for the injected substance and nonpermeable for the gas

flowing around the surface.

The expressions for the enthalpy at the wall and at the outer

edge of the boundary layer have the form

hw hi. \C,,1 i T + hz'. (5.1l4)
I 0=It-,

Tt

cg, I,. (5.!5)
i 0

The species concentrations at the outer edge of the boundary

layer, cie, are usually assumed to be known from the solution for

the external flow. In a majority of cases, it is assumed that the

external flow is in a state of thermochemical equilibrium, i.e.,

. . Thus, the boundary conditions at the outer edge of the

boundary layer are usually completely defined. The conditions at

the wall for the concentrations c w and velocities v are inter-

dependent, as will be seen later. The value of vw may, in principle,

be specified if we deal with injection through a porous surface.

The valu.es of concentration at the wal., ciw, in this case must be

determined from auxiliary conditions in the course of solving the

problem.
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In the case of a flow over a sublimating surface, the normal
velocity component vw cannot be arbitrarily specified and must,

just as the concentration at the surface c iw be determined from

auxiliary conditions in the course of solving the problem (in the

case of ecuilibrium sublimation, one of these auxiliary conditions is

given by the Ci.ausius-Clapeyron equation, which relates the concen-

tration of the suilimate -o the temperature and pressure at the wall).

In order to derive the auxiliary relations connecting the flux

of a substance injected into the boundary layer through a porous

surface (or forming due to sublimation) to the concentrations of

the sl-cles at the wall, we-shall establish the condition of con-

serva'1on of species i at. the gas-solid interface (Figure 92). The

.-..figure showsthat species I travels

from-the ga~s to the wall by d-iffusion.

i, iThe mass flux of species i migrating"

GI • in this way is obviously equal to

Solid • P -- ).. [ i, is the effective

diffusion coefficient C1,58); here

Figure 92 we coniider mass diffusion]. At the

same time, species i travels from

the surface into the boundary layer with the flow of the substance,

,(PV)W, injected through the wall. The amount of species i, carried

in this fashion, is obviously equal to (pv) ciw. Inaddition, if
w w

Sspecies i becomes a component of the mixture, injected into the

boundary layer through the porous surface (or sublimating) and the

concentration of the species inside the surface is (ciw), then the

amount. of species i entering the boundary layer through injection

will be equal to (pv) (C If a chemical reaction occurs at the
w iwQ

wall, as a result of which an amount giw of species I is added (or

subtracted) .(giw is the mass rateof formation of species i per unit

area), then the condition for the conservation of species i at the

wall, taking into account'all the transfer processes indicated above,

can obviously be written in the form
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Substituting the expression giw (4.35) into the left-hand side of

Equation (5.16), we get

P e' y . UV 1- 1v, [ iw - q• _
-! =~~~pv tc • - (c• .pj•]

For species that are not contained in the mixture injected into

the boundary layer, the value of (ciw) may be set equal to zero.

When only one species is injected, (ciw) = 1. It is obvious that

for an injected mixture inside the wall, we always have 1(cJ.)_ .

If there are no chemical reactions on the surface (giw 0),

condition (5.16) becomes

"",. - (=0).] - ( 4) (5.18)

When one species is injected through the wall [(ciw)- 1], Equation

(5.18) can be written in the form

PwV =pw • Ci, -- P,, 1. (5.19)

Now we proceed to consider the heat balance at the gas-solid

interface (Figure 93). The heat is supplied to the surface of the

body through heat conductivity and mass diffusion

q,, +

The heat is carried from the

surface to the boundary layer by
) F the flux of the substance injected

Gas into the boundary layer:
Gas"

Solid the following heat flux flows in the

direction from the solid body

toward the interface:

(temperature gradient in the body is

Figure 93 assumed to be zero). Thus. the

heat flux contributing to the heating

295
FTD-HC-23-723-71



of the wall (inside the wall), turns out to equal

= 2..,. 4- p..h~(~-
(5.20)

.1 -PWOW2 [cj~ht. -. (c1wh.w)_].
* I i

Taking into account the expression for the heat flux from the
gas to the wall, (4.147), we bring Equation (5.20) to the form

q, A' + N(Le - 1) h,,, ] -

(5.21)

For sublimating species we can write

( hj,-- h., (5.22)

where hiL is the heat of sublimation of species i. Substituting
Equation (5.22) into the expression (5.20), we get

S , •(.-). + 7,pwYvhjw( O

(..23)

where

is the total heat of sublimation.

By expressing the diffi sive flow of species il),. •,•) with the

aid of Equation (5.18), we obtain froin Equation (5.23) the following
expression for heat flux which is useful in practical calculations:

q4, oil--~'i~~(pZwJL (5.25)

In conclusion, we note that the analysis done here for a sublimating
surface can be easily extended to the case of vaporization with a
gas-liquid interface. One must only replace the heat of sublimation

FTD-HC-23-723-71
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hL with the heat of vaporization hoe

The conditions (5.16) - (5.19) obtained in the present section

relate the flux of the substance injected into the boundary layer

(or produced due to sublimation) to the concentrations of the species

at the wall. Thus, all the boundary conditions at the wall are now

fully determined.

§ 31. Velocity Profile and Friction on a Flat Plate

with Mass Addition to the Boundary Layer

The expression for the velocity profile in the turbulent core,

based on the Karman formula (2.69) and on the distribution of the

stresses of friction in the boundary layer (5.3), in general has

the form (5.5). In order to determine the constant of integration

C6 in Equation (5.5), we make the same assumption as in Section 12:

we assume that the derivative dn/d0 at the boundary of the laminar

sublayer on the side of the turbulent core has the same value as in an

incompressible fluid in the absence of injection, i.e.., (dn/dý)÷ =

i/f - Ka. In other words, it is assumed that (dn/d4),÷+O doe3 not

d.trend on compressibility, heat transfer or mass injection. The

turbulence constantO K and a will be assumed to be equal to their

values in an incompressible fluid (x = 0.,, a a 12). This assumption

abetut the value of the derivative at the boundary of the auhlayer

Rnd the turbulent core, a4 Indicated by the s1ope of the velocity

PPofN103 in the case of Injection (Oiture 77 and 78), will

not reault in any noticeable errr•. in the Computation.

tUsing the above ansumption, one obtaina the following expredSlon

ror th# velocity profile In the turbulent core:

The tlope or the velocity proftil In the turbulent coOe t# obvIougly

given by

.. .



d ip -I X X ,• ( 5 . 2 7 )

Here U is the dimensionless velocity at the boundary of the laminar

sublayer (the question of the determination of u will be considered
below).

In the case of a flow of constant density over a plate and

injection into the boundary layer of a substance of the same

composition as that of an oncoming flow (P - const a Pe), thee
expression for the velocity profile (5.26) after evaluation of the

integrals will become

Here

In order to determine the velocity profile in the laminar sublayer,

we u3e Equation (3,106)0 first simpliryinra it by assuming that

viscosity it oonatant in the sublayer (u conat a u Nexto

subatituting the relation (5.3) in Equation (3.106) and perforIng

the Integration, we obtain the following expraosion for the velocity

profile In the laminar *ublayert

M-.30)

Por small injection IntenitOite, expsdlhn the Otponent In a Oet-rle

and retaining ony the fiprt two totari of the series we rimd

When "there It no Injection, the expretolons (5.30) !n (5.31) r*duce
to the eXptzlone tor the 1inear v6locit$ IWotile, (3.30) Whith

utre obtalne earlier.
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The velocity profiles in the

A 24 laminar sublayer, calculated using

09 -- Formula (5.30), are given in
t Kj-zFigure 94. The diagram also

IS.. -- includes the logarithmic velocity

profile for an incompressible fluid

-- for no injection. At first sight,

r--, t -the character of the variation of

,-/± velocity in the laminar sublayer in
Figure 94 seems to be paradoxical

V since the velocity profile here

becomes more solid with an increaseFigure 94 In the injection parameter, which
contradicts the experimental data

given above (Figures 77 and 78). However, this paradox ,t only

apparent -ince Figurea 77 and 78 deal with the actual velocitioeu /

and FiPurqe 94 with the velocity profiles Oxpressed in term- of the

universal eoordilnte , - u/v#.

"The ptoblem or the thickness of the i•nanar sublayer and the

vtlooity at itd boundary in the turbulent Caro- In the Presence or

.nje)tion i4 the least ti.deatood today. Th acaur expotermental

dfla available to ut enable us to conclude that th@ relative thick-
nesof the 1janinar aublayer detreases with ant incroase- In the

injecttion Intvtnsity. Unrortunately, there Are no nu#erlial dkat
available that Vould be based Ont rVeliable xeiata results.

'fl @Kh$5I~t rr te vloctyprofile in the leainirabae
(5610), based on the law MD,3 tor tho distribution or tan"ent~aI

ztritsaeo, which i# In p~od AgNement In the lialnar oublaiyr uith

the xsio*nrnna 4ata (Plgure 16), &Mn gpp-rently be eonfl4ý

@red sufficiently reliablo. Thu#, It th@ thickttess or tho ln4slnAr
*gublafo lr 13g isalculatod on the basis o aCcrtdai conaiderft'owt then

Criot (5.30) we tan find 4and cOnsec4U~hontyin4



Van Driest [20] in determining the thickness of the laminar

sublayer, used the condition similar to the condition (3.102),

with the exception that the friction stress at the boundary of the

sublayer, and not at the wall as In Equation (3.102), was the

determining factor. In analogy with condition (3.102), this can be

stated in the form

(5.32)

The simultaneous use of Equations (5.32), (5.3), and (5.30) leads to
the following expression for the thickness of the laminar sublayer:

If there Is no injection (B# 0), Equation (5.33) reduces to the
condition n ~ which was assumed below (Chapter III and IV).

The results of a computation or n and *using Equations (5.33)
and (5.30) are given in Figure 95.

- .~ In addition to the velocity
profiles In the laminar sublayer
calculated using Formulal (5.30),,

Figure 94 contains the velocity
profiles in the turbulent core cal-

culated using Formula (5.28) ror
C three valuea of the Injection

PAauetor as 0O.2 godli. The
- boundary oir the liamiar tublayer va.4

* hert doterminted tram Etquation (5.33).

Now lot U4 Proceed to toftcidei

the problom or calcuating the friction on -A rlat plAte 0ith Injection.

It i nOat hard to SO# that with the aSsumptiont (C6 1 i0, judo in
4.the preoent chapter, the expressilon ror the womentum 16,48 thickhte55,

MI.). eoe



11+8l ' Y diL (5.34)

0 0

Here, as earlier in Section 12 of Chapter III, in calculating 6
we assume approximately that the derivative n in the entire boundary

layer is given by Equation (5.27), which was obtained for the
turbulent core. Here we skip, as it were, over the laminar sublayer.
The lower boundary of the turbulent core is accordingly shifted to
the wall (u * 0). Such an assumption, as was shown in Chapter III,
is applicable to a flow near a nonpermeable surface, and it is even
more applicable with injection, since injection lowers the relative

thickness of the laminar sublayer. The integral on the right-hand
side of Equation (5.34) can be evaluated using the asymptotic
expansion (3.39). After some calculations we find the first aoproxi-

mation

•urthermore, substituting the expression (5,35) In the integral

momentum relation (538), and following the procedure indicated in
Section 12, we obtain the following system of equations which
enables us to determine the local friction coefficient on a flat
plate:

(5.36)

It + i4F C4c+ )

Heoe 'i•It the friction toeoticient on a plate In an Incempresible
CluMi with no Injection, tivcn ettlier by the Kat'rat Pormula (3.59)

e by PePuiad (3.00). !he viitotty of a 9aS mixture at the will
tan b@• .•lulatod uwltv tho Nlations given in Chapter 1. Chapte: I
al#o contalin a de~trptioa 4C teehniques that can be utied to calcu-
iate tho vieosioty or gat mixtured. The runction N it easily computed



using a table of decimal logarithms and the last of Equation (5.36),
in which the right-hand side is known. ln order to determine the

function K (see the second of Equation (5.36), it is necessary to

establish a relationship between the intensity of the gas (gas mixture)

in the boundary layer and its velocity. The form of this relation
will be determined by the flow conditions in the boundary layer

(presence or absence of chemical reactions) and the assumptions made

in establishing the relatioh between the velocity, concentrations,

and temperature (for examples assumptions about the magnitude of

Prandtl and Schmidt numbers).

"Letting the Reynolds numbers in the first of Equation (5.36)
go to infinity (Rex * -), we obtain (similarly, as was the case

In the analysis of the flow around a nonpermeable plate (Section
12)), the following limiting formula for the ratio cafcfo:

. ,(5.37)

Equation (5.37) makes it possible to determine the limiting

value of the flow rate coefficient c,a " pjpUI,, at which the friction

at the wall becomes zero. Recalling that by definition B * 2 am/af ,

we can write Equation (5.37) with the aid of the second of Equation
(5.36) In the form

N+

Setting on the right-hand side of Equation (5.38) *,/aO " 0, we

obtain an expression for the limiting value of the flow rate coeffi-

cient

(6.39Y

Pr0 Injection Into the boundary layer o t ty Ca or the same density

as that of the gas in the oncoming ftlow (' const a ie) Pormula

(5.39) yields (ain) ..
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Now we shall consider certain particular cases of the flow near

a flat plate with injection of mass into the boundary layer.

"".2. Boundary Layer on a Flat Plate with

Injectibn and the Prandtl and Schmidt

Numbers Equal to Unity [121

"Let us consider a flow of a gas of homogeneous composition over

a flat plate. The gas injected through a porous surface into the

boundary layer will also be assumed homogeneous, but its physical-

chemical properties will be assumed different from the gas in the

main flow,. In addition, we shall assume that the substance injected

is inert r-elative to the gas in the main flow, i.e., there are no

chemical reactions, and the mixture in the boundary layer may be

considered binary. We shall also assume that the spectfic heat

capacities of both species are constant, i.e., they do not depend

on the temperature. The Prandtl and Schmidt numbers and their

turbulent analogs are assumed to be equal to unity.

With those a~sumptions the equations of the boundary (•.85) -

(•,8?) 'ecome

The boundary eondition• for the system (5.'•0) will be written

in the frorm
+ a

. u•,/l ,, 4•~

SThe eubounipt d will refe, hro e and below to the (54) rwetellb ow tht

injected autotance, and the aubtoript I to the paramPoters or the

onooting flow.

i• _l.S TD-tIC- 23-72 3-7l



Since the mixture in the boundary layer is binary, the convenience

of conserving species i is no longer present (cc = I - c 2 ). The

condition for the concentration c 2 at the outer boundary indicates

that there is no injected substance in the external flow.

The equation of state (1.86) for a mixture of two gases becomes

(5.42)

where

AI,M,

Vi* , + M-2 (1 (5.43)

is the molecular weight of the binary mixture.

The system ( 5 . 4 0 ) and the boundary conditions (5.4i) imply

similitude of velocity, total enthalpy, and concentration fields

i(54-)

From Equation ( 5 . 4 4 ) we can derive the obvious relations

11-14t•+ (I1, -14t,) (5.

(5.46)

According to the definition of total enthalpy, we have
I"

Since

rs.r,,T+ '-,rtj + ,T., (5.-9)
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from Formula (5.45), in view of Equations (5.47) - (5.49), we obtain
the following equality giving the relation between the temperature

1. and velocity

Spal- - -- -- )) it -- 0(1 --- (5.50)

Here

IL..5 Y1$). Oc eQT.fl 1(.1
if there is no mass Injection into the boundary layer (cw 0)

or if there is injection of a gas with the same specific heat

capacity as that of the oncoming flow (ct c Equation (5.50)

reduces to the Crocco integral (3.47).

Furthermore$ using the equation of atate (5.42)t Equations (5.43)

and (5.50), we obtain an expression tor the density in the boundary

layer

Wile"~

kExprossion (5i.52) it'plie# tli&t, in addititrn to the N"Aoh nunlwr at
the outer ed#e or the boundary layer, Ni, and the tZ,#eratur- factor

u/Te, .the third Itportant "birfa*ter wh*!.h detertitel. the dstribution
of the density In the boundary layer I# thq tonceitrtio r tho

injected substafce at the Wall ew"

In order to obtain a solution in a closed #rrD, one mutt rfind

rolation between the injection p"aator B, defined by •qu$•tl (a .f,,
and the concentration o . Thi a relation can te obtaine rot
Lquation (V.9), which nxpiene the eodnsoratlon conditlon tfor the



injected substance at the wall. Taking into account the assumption

that the Schmidt number (Sc -cP3IA.) is equal to unity, we put (5.19)

In the form

Pw~vw~wr~w¼j..(5.54)

Using Equ (5.0,), we find from the expression (5.54) the

desired relation between tne injection parameter B and the concen-

tration of the injected substance at the wall

a

Equation (5.55) implies that the concentration of the Injected

substance at the wall for a finite value oa the parameter B ia aaways

less than unity, and in the limit assumes the following valueo:

a 2W 0 for B . 0, co o I for B .

M.alngc use ofa quation (5.55), we replace e• in Formula (5.52)

by D. Then after siaple alsebrA we obtain

r tho t~a hasI a low veloel1ty (6~ 0) antd It there 13 no hatt
tranferr betwoth tt* Cae anid the Wall Cu 0), Equatian MST¶,f
Si iT

the frunction K, *blab detetrine;4 friction, is q~tnnlly. given by the
oecond of E4uation (5.3-6), Mn tn the Oaft it 0 it #

L~ I P~-23--723-7l
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V~I±laxrcg J iarctgj F 59

for At > M,

and

K= 2  1- [ arth V1 MIarth I (5.60)
B iM, Allg

for M <AM'f.

W• en the injected gas has the same molecular weight as the gas in the

ri.in flow, (M1 = M2 ), assuming that w = 0, the expression for

K becomes

- K 2 =f - 1).K () (5.61)

In the general case, when the density is given by Equation (5.57),

the integral in the expression for K (5.36) can be evaluated

numerically or graphicallv.

When calculating the friction coefficient, we assume that the

injection parameter B is given. After we determine the friction

coefficient c with the aid of the system (5.36) using

R. v- ,(5.62)

we can determine the relative flow rate of injected gas. Thus, a

computation for various values of the injection parameter B enables

one to establish a relation between the friction and the flow rate

of the injected substance, i.e., to determine the relation

C, 2-" 111 for given flow conditions.

Figure 96 gives the plots of the friction coefficient versus

the injection parameter for injection of various gases (freon-12, air,
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helium, and hydrogen) into an air
s .4- boundary layer. The calculation

-I was made for the conditions: Me

4 _S t-"reon -v 0, Tw /Te = 1, Rex = 10S-7-

A- -ir Figure 97 deacribes the
17--- effect of the ratio of molecular

ydog;e7_ M I weights on the injection parameter
18 4f 44! ?, Z5 ?i ,4 2•for a fixed value of the friction

coefficient. The figure shows that
Figure 96 a change from injection of heavy

gases to injection of light gases
/4=0, T =7

T.4 permits one to significantly

r'educe the value of the injection
\ 27 - parameter.

4V6
- • -4- Figure 98 illustrates the

4 6 I
dependence of friction on the

relative flow rate of the injected

Figure 97 gas for the conditions Me 3
Rex = 4-106, T /T = 1.1. Thex~ we

upper curve was obtained for the
,Y4,,•t fie •..injection of air into air, the

lower one for injection of helium
4r • - into air.

44 i Air -

Heiu~m,1  This method of calculating

L-A friction on a porous plate can be

relatively easily extended to the

Figure 98 case of sublimation of a surface

immersed in a stream of high-
temperature gas [22]. We know that if the surface temperature is

lower than the temperature at the triple point in the phase diagram,

then in a flow of a mixture of gases over a solid body, with the

partial pressure of the vapors emanating from the solid in the

oncoming flow lower than the pressure of the saturated vapors at the
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surface temperature, the body will be vaporized (will sublimate) by

skipping the liquid phase. The mechanism of the transfer of various

quantities (momentum, heat and mass) in the boundary layer with

addition of mass through a porous surface and sublimation is identical.

Only the boundary conditions will be different. If, for a porous

addition the concentration of the injeŽcted substance at the wall may

change in an arbitrary way, then,for sublimation, the concentration

- of the substance forming at the wall depends on the heat of subli-

mation and the surface temperature.

The concentration of the sublimating substance at the wall, C2w,

is given in terms of the partial vapor pressure P2 by

12 p2
__ L-P (5.63)

where is the molecular weight of the mixture at the wall [see

Equation (5.43)]. For equilibrium sublimation, the partial pressure

of the sublimate at the wall, P2 1 is equal to the partial pressure

of the saturated vapors, p*, at the temperature Tw, given by the

Clausius-Clapeyron law [23]:

IF, P'2 b - -'7=1-- (5.64)

where b is an experimental constant, hL is the latent heat of subli-
mation. Substituting in Equation (5.63)-for the molecular weight Mw-

its value from Formula (5.43) and keeping in mind Equation (5.64), we

obtain an expression for the concentration of the sublimate at the

wall given in terms of the wall temperature and the boiling temperature

T 7 ,(5.65)

If the temperature of the wall is equal to the boiling temperature,

(Tw = TK), the concentration of the sublimating substance at the

wall will become equal to unity, which corresponds to a type of

FTD-HC-23-723-71 300
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boiling in which the vapor flow rate and the concentration are no

longer related by a boundary diffusion condition.

Given the sublimate concentration at the wall, (c 2 w), it is

easy to determine the value of the injection parameter B, related

to C2 w by Equation (5.56). Making use of this equation, we obtain

the following expression for the injection parameter for the case of

sublimation of the surface material

M1 TTx 1(5.66)

Thus, this method of computing friction on a porous plate can be

used in its entirety to calculate the equilibrium sublimation, the

only difference being that the parameter B may not be specified

arbitrarily but instead it must satisfy the condition (5.66).

§ 33. Heat and Mass Transfer in a Boundary Layer on a

* Flat Plate with Injection and the Prandtl and

Schmidt Numbers Different from Unity_

In this section, in contrast with the preceding one, we shall

discuss a flow in the turbulent boundary layer on a flat plate

with injection and the Prandtl and Schmidt numbers different

from unity. The necessity of this type of analysis is

due to the fact that for injection into the boundary layer of gases

which differ in their physical-chemical properties from the gas in

the oncoming flow, and in particular, for injection of light gases

such as helium and hydrogen, the Prandtl and Schmidt numbers may

differ significantly from unity. For example, the Schmidt number

for the gas mixture hydrogen-air, calculated for the conditions:

T a 2730 K and p - 1 atm, ranges from 0.2 to 1.7 depending on the

species concentration. The Schmidt number for the mixture helium,-air

can also range from 0.2 to 1.7, and the Prandtl number for the same

mixture varies from 0.5 to 1.1 depending on the npecies concentration

(see Figure 99, mass concentration of helium is plotted on the

abscissa axis).
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As was noted many times in the

Sq ..- preceding chapters, the deviation of the

16 ~ .*Prandtl and Schmidt numbers from unity
. . .in the laminar sublayer is usually of no

,/ great significance when computing friction,

-. I • but it may have a substantial influence

on the heat and mass transfer between

S ,., •the gas and the wall.

Figure 99
To simplify the analysis, we shall

assume that the Prandtl and Schmidt numbers are constant over the

cross-section of the laminar sublayer and equal to their values at

the wall. Otherwise, the analysis will be similar to the analysis

done in the preceding section (chemical reactions are absent, specific

heat capacities of the species are constant, the mixture is binary).

In order to establish an approximate relation between the velocity,

total enthalpy, and concentration profiles, we shall use the equations

for a turbulent boundary layer expressed in terms of the Crocco

variables, (4.97) - (4.100), at the same time simplifying them by

means of the assumption of local similitude, _ _ o) which was

often used in the preceding chapters. In this case, the conservation

equation for the injected species and the energy cquation in the

laminar sublayer, ( 4 . 9 8) and (4.97), become

SS i t (5.67)

e Wu N (5.68)

Here

-- • [•V.u(Pr - 1)u itJ (Le - 1)(cps-- ep,) T-i ." ( 5.69 )

The quantity q may be called a generalized heat flux.

In the turbulent core the same equations can be written in the

form

FTD-HC-23-723-71 311



*H 0 (5.70)

0= . (5.71)

The boundary conditions for Equations (5.67) - (5.70) have the form

for u - 0 H = HW, CS - C1W;
for u -UU, N= H,, •=0. (5.72)

The problem of determining heat transfer reduces in this case, as
usual, to a determination of the friction coefficient and of the
relation between friction and heat transfer.

The relation between the concentration and total enthalpy
profiles, and the velocity profile in the laminar sublayer. Assuming
that the distribution of the friction stresses in the boundary layer

is given by Equation (5.3), we put Equation (5.67) in the form

, (Sc-- )a
CS T-F+'-a '(5.73)

Here primes signify differentiation with respect to the dimensionless

velocity 5 u/U
e

Integrating Equation (5.73) once and determining the constant of

integration from the condition (5.19), which in this case, (Sc d 1),

becomes

- d - SC (/ - C\k),

(5.74)

we obtain

es B-zSc (t - e.) (t BOm)" (5.75)

Integration of Equation (5.75), using the second of the boundary

conditions (5.72), leads to the following relation which relates the
concentration and velocity profiles in the laminar sublayer:
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CS I -- (t -- c( R). (5.76)

It should be noted that Equation (5.76) cannot be used in this form,

since we have not established the relation between the injection

parameter B and the concentration at che wall, C2w.

Now we turn to the energy Equation (5.68). Introducing the

dimensionless quantities

)jJI 11 T q11 J(5',, . , Wr ( 5 .7 7 )

we bring the equation to the form

di dW 7 (5478)

where

+( -- ) a+

+ (Le- ") (c,. - c'.) e;' (TI - U" del 5

In Equation (5.79), in contrast with (5.69), temperature T is given

In terms of total enthalpy and velocity by

Tr.=s(IŽ-!.)41 (5.80)

Making use of the expression (5.3), we integrate Equation (5.78)

and determine the constant of integration from the condition at the

wall. As a result we get

q q. + 11(TI - TA.). (5.81)

Here

q .U 2c r

1,' Pout(fl, - C ,-'-'u
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qw is the heat flux from the gas to the wall, given by Equation
(4.147), Hr is the equilibrium enthalpy of a thermally insulated wall,
or the enthalpy of recovery (a definition of the last quantity will

be given below).

We substitute the expression for q given in Equation (5.79)
into Equation (5.81), and after simple algebra we obtain

d R . u : .t

+(e-)(c1 - c,,)'c;,1 lA -La) ,• a,, 5.3
+ (P (1.--•' (5.83)Pr

Equation (5.83) is a linear equation of first order with variable
coefficients which can be integrated by quadratures. However, in
order to obtain the final result in a simpler form, we shall limit

ourselves to an approximate determination of the distribution of
total enthalpy in the laminar sublayer. Thus we shall assume that
Hcan be expanded in a series involving powers of the longitudinal
velocity i. Since U < 1, we retain only three terms of the series.

In this case we get

7 I +" a ° l,+ a(s.84)

Using the condition at the wall H - hw at u - 0, we find that
S0 h A/h h. Then differentiating the expression (5.84) with
respect to • and setting • - 0, we obtain

alin1=X--. M =Tas ''w (5.85)

The coefficient a1 will be found from Equation (5.83) for U - 0:

a, d) Pr Q + HAT. (5.86)

Here

A *• (- t ( -) 0 SC(L -) (5.87)
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An expression for the coefficient a2 will be obtained by
differentiating Equation (5.83) with respect to u, and then setting

= 0. The result will be

I'PR Pr(A+pr-i)Bj,+(I-Pr)(,r-)M:+
.OK B [IA + A(Le- i)' + Sc-i+ ; (5.88)

Substituting the values of the coefficients a 0 , a1 and a 2 in

(5.84), we obtain a relation connecting the velocity profile and the

total enthalpy profile in the laminar sublayer:

Pr(A + Pr -- 1)81, +- (t -(5.89)

+ J1T.A (A + A (L* - t)-1 + Sc - + pr))•

A relation between the concentration and total enthalpy profiles,
and the velocity profile in the turbulent core. In order to
establish a relation between the concentration and velocity profiles,
we integrate Equation (5.71) once

(5.90)

The constant of integration C will be determined from the condition
of continuity for the diffusive flows of the injected species at
the boundary of the laminar sublayer

Using Equations (5.91) and (5.75), and integrating (5.90), wo
find a relation between the concentration and velocity in the
turbulent core

,+ 4). (5.92)

Equating the concentrations obtained from Formulas (5.92) and (5.76)
at the boundary of the laminar sublayer, we obtain a relation between

315
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the injection parameter B and the concentration at the wall, c 2 w :

•. = i -0(+ B)-,(I+ •=)'-_3. ( 5.93)

It should be noted that, if the Schmidt number is equal to unity,
Equation (5.93) will reduce to Equation (5.55) of the preceding

section. Using Equation (5.93), we bring Equation (5.92) to the form

S= ((5.94)

Now we establish a relation between the total enthalpy and the

velocity in the turbulent core. Integrating Equation (5.70) once,

we obtain

The constant of integration in the expression (5.95) will be

determined from the condition that the generalized heat fluxes are

equal at the boundary of the laminar sublayer. Using this condition

and Equation (5.8), we find

+ i + aOR - i,,)l. (5.96)

Integrating Equation (5.96), and determining the constant of

integration from the condition at the outer edge, we obtain a relation

between total enthalpy and velocity In the turbulent core
8Be- 0 + fig.I" R-, + 8(,#* - 01 (t - €) (5.97)

It Is not hard to see that if there is no injection (B a 0). nquation

(5.97) will reduce to Equation (4.l50) of the preceding chapter.

Determination or the enthalpo recovery H1 and.the Reynods

-lmllitude parameter 2 c/hl0. Letting i in the expression

(5.97), we obtain,
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IL= ~(i + Ha)(1 + B), ( -(1a)(1 + B)y"(i.- B,). (5.98)

Equating the values of H,, determined from Formulas (5.98) and (5.89),

at the boundary of the laminar sublayer, we obtain

Iwi (+ BAta - B(I - k)-(t + Br, +

- + B*AIA±A(L*.'I)-&+Sc+N.,.W +
+ Pr.[,... (t -4a)(, + By* + ,t(A + P.- I)Dg - 1.9

If there is no heat trinsferlbetween the gas and the wall

(iw a 0, hw atH ), Equation (5,99) easily implies the rollowing

oxpression for the enthalpy of recovery:

Xi ft + Ma -DO )- 90 -8)* | +

tiore we used the approximuate relation !3.!,50),

Sjubstituting the relation (5.82) in r~quatiotp (5,99) and aolvlr4

the resulting equation ror the iReynoids aaitlitude pAra ert ve .-

I4 Stet + -

+ - .• - , ,

l rI, tie uwed the apprOXICALe rllation (3.159),

In the absence ot liNJectlon (0 0), tho eXpt't31iOna (5.100)

and ($.101) reduee to theirk analogs obtained in Chapt;ar 1i.

,S PI-ftC-2j-723-?1



* I

If the Prandtl and Schmidt numbers are equal to unity, we have

independently of injection Hi = He and 2C/C= 1, as we can easily

Infer from Equations (5.100) and (5.101).

The temperature and density distribution in the boundary layer.

Given the distribution of total enthalpy H and concentration, as

well as Equations (5.80) and (5.47), we can find the temperature
distribution in the boundary layer

r _

In the laminar subl.yer I and e are given by Equations (5.89)
and (5.76); in the turbulent core-by Squat•on (5,97) and (5.94).

U-ins the condition of con-stant pressure acrosa the boundary

l$@er, tho equation of state (5.42)o and r£quations (5.43) and (5.102),
we obtain the den3ity distribution in the boundary layer

p t,44IflV..,}I..t
05.10 3)

Thr- rriectiob earl be# Calculated from tht rolation betwo,0n the density

wie. vel9tY QUfl 9qusttn . It wi11 b# rtall d4 that the
Comcentration or the liqjOate lpotiesi 4n the wall, c4ý, 41n be

dttorstied Prrom ths! intJection paraeter h' In necordance4 with M4uatiOn

tt~1 r4~4trA-1 th# 10it4a data W#e muot ber ~Itoo
th" ;4ae nube.r at th. outer ed. or the boudar$ tAyr NO. ,.ynt

nt~r ttteltperauN of thel wa~l t.tupe Atuea the

" utov' eýdpi io' th boundwry t.ar, YT Vte, tt kiub be Caven the

twoloaular wolghtt AMd specific nat capsgteiti Or the InJected ta
r.04 the Ca r.c"int over the surrace of a $ite.

"rfven the Vtlunt a, thes injectioftn .tsttbetor 0, W# .4An Uto I- "
feth"d #tesentrS in Sett:ont 32O 1.e., adfttumin tha~t thev $randti

I ' i *• ' '" ' ' ' '~~ **'*'- '' I --''



and Schmidt numbers are equal to unity, to determine the local

friction coefficient with injection, c, and the friction parameter

c, which is related to ef by Equation (3.8). Then, given the

values of B and ; we determine the parameter Bg (see Formula (5.20

•(5.291. Formulas (5.33) and (5.30) can be used to calculate
the thickness of the laminar sublayer "z and the velocity at the

b.oundary of the laminar sublayer q Then, using th* Schmidt nuirher
"as a parameteor, from Equation (5.Q3) wo find cw as a function if B

a (Fegure 100,a). Given the composition of the mixture at the wall,
(Cw•), and the conditions at the wall (Tv. p), we can determine the
actual Schmidt number at the wall (So w)(6) (Figure 100,b). Using
the data of Figur4es lO0,a and lO0,b (see the key In the diagram), we
can find So as a function of the Injection parameter (Figure lO0,c).
After the relation between B and So Is established, Formula (5.93)

can be used to determine the actual coneentration of the injected
species at the wall, c•. Similarly, we can detemine the value of

thle Prandtl number Pr However, in many eases thic 13 not vou-ssar

sincee the depe'ndonce of' t"-

Prandtl nO~eron thtoOMPOd±-

with the Schmidt vwA trand,
the nuftbor ma&y be a#itutwd
tofhtiht. 4iven thit Vaalts b"f

a) i) c)the sohz44t 4nd PrAw~tl number42 &

figutv 100 VScnCluaethe Le"ic

4tt lio tb# following Ift thIs of-der: runCtion A (ustg. Wiq% tfsn

.14MU4. Ptcovry ethafl NO %. (~uACin1 Vht Cvoflux le4~*l4 uni

* ~ llte4tparewet(uintt~aton(s~oklheturfluxt -ootut

9.uAtla".. M01)fl -ntAlnd cttheehratl" Ani Iony thA lamina tou#.4ry
11i~ (tlagn.tquotlaw(.9 0 $.1042 An lbthut~tintee 1 es0

qh hat flux from the 4al to the wa11 tau be ealeuk~lte tintA

P~ot$t4(6) 4ItA1r-v On Paoe~f

-jic 2* 1- . --7



'5.104)

As can be seen from Equation (5.21), the heat flux which con-

tributes to the heating of the body (inside the body) is, in this

case, equal to

q. -(5.105)

FIgure 101 is a plot of the ratio c/(CC) versus the flow

rate of the Injected gas (hjdrocen), obtaintod for Pr a Sce 1 (olId

line) and for Pr a 0.7, &, Sew (dashed line). A comparison of

tbheoe curves shows that the deviation of the Prandti and Schmidt

numb'ers from unity has only a slight
* • 2 effect on tho value of the friction

ci 4-o'etfeent. Per this reason, it
iu not necoasary to use highor-

atrapproxlnatioaa (for c. "K,.
2C IQ n the computation. This%

tact Ferttite its to expect thatowith

4V ti~n aturlwy -tufticiOnt In pnactlcalI
caicvIatAlnc, the friction cOatti-

cittwith Iotjeetion may in =at,$

Inn on

001i tW unity (etikOn IM

Usown cals4U11iatin the pafloter4 ghaattItt heat triansfer
t the Cat AW thwl* ( r A t Ive4fasfl that tao Pr•rdtl

ait ;hui-t asr arodtve t flou unity 4utt be taut" Iftbt



FOOTNOTES

Footnote (1) on page .279. It should be noted that the
expressions (5.6), (5.7), just as
(3.9), (3.10) are approximate, since
they are obtained if one neglects the
laminar sublayer, simultaneously
extending the turbulent core up to theS~wall, which is valid in the case when

i (the laminar sublayer is relatively
thin.

Footnote (2) on page 279. A detailed analysis of these discrepan-
cies may be found in: Spalding, D. B.,
1D. M. Auslander and T. R. Sundarom,
The Calculation of Heat and Mass
Tr'ansfer through 'he Turbulent Boun-
dary Layer on a Flat Plate at High
Mach numbers, with and without
Chemical Reaction, "Supersonic Flow,
Chemical Processes and Radiative
Transfer", Oxford-London-New York-
Paris-Frankfurt, pp. 211-276, 1964.

Footnote (3) on page 282. It should be noted that in experiments
involving injection at high supersonic
velocities it is not always possible
to obtain gradient-free flows over a
plate or a cone. This is due to the
effect of an extended boundary layer
on the external flow. We note inci-
dentally that a theory of the inter-
action between the turbulent boundary
layer and the hypersonic external flow
is a• the present time in its infancy.
See, for example, Barnes, J. W. and
11. H. Tang. Strong and Weak Inter-
action Parameters for Turbulent Flow,
AIAA Journ., Vol. 4, No. '0 (1966);
Russian trarslation: Raketn. Tekh. i
Kosmonavt., Nn. 10, 1966.

"Footnote (4) on page 281. Mugalev, V. P., Experi.mental'-nvesti-
gativn of the Turbulent Boundary Layer
on a Plate with Injection of Air and
Carbon Dioxide at Supersonic Velocities.
Trudy Moskovskogo fizicheski-tekhniches-
kogo instituta, Oborongiz, No. 4, 1959.
Mugalev, V. P., 6xperimental Investiga-

*€ tion of the Subsonic Turbulent Boundary
Layer on a Plate with Injection.
Izvestiya vysshikh uchebnykh zavedeniy,
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Series 'of Aeronautics Technology, No.
3, 1959. Mugalev, V. P., An Investi-
gation of Heat Transfer and Turbulent
Boundary Layer Characteristics on a
Porous Surface. Teplo-- i inassoperenos
(Heat and Mass Transfer), Vol. I,
"Energiyalt Publishing House, Moscow,
1968.

Footnot~e (5) on page 291. -Figure 91 and Formula (5.11) are given
in survey article: Squire.,-L. C.

.,Some Notes on.-Turbulent Boundary Layers
with Fluid Injebtion at High'Supersonic
Speeds,'ARC.CP,-.No. .740, 1964.

*Footnote (6) on page-: 31-9.. The methods of .calcu.Lating- the
. . . diffusion~and viscosity coefficients.

Chapter I. Handbooks and.-aids that.
might'.help in the: computatibn are~ also
indicated there (see, for example, the
-monograpn by Bretshnayder., [5] on

- page 39a.

3- P
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NOTATION

Roman Letters

A - see Equation (3.173);
SAk - chemical symbols of reactants, Equation (4.1);

A - speed of sound;

""• .,p 2 PUVZ 2
B• P •.2 B 0- -- ----B Jý Cf B o P'U 2C 1

B=u--, °7 o-• •o

BipU o injection parameters;
P'oy B1,0 PU ( I)D-

P .u-- o,7' P.Uo = Cu-;" €.•.

B VW

b - impact parameter, Equation (1.16);
CF - average friction coefficient, Equation (3.62);
CH - average heat transfer coefficient;
Cf - local friction coefficient, Equation (2.85);

Ch - local heat transfer coefficient, Equation (2.91);
ci -mass concentration of species i, Equation (1.29);
cm - flow rate coefficient for the injected substance,

Equatirn (2.86);

Cr -- recombination parameter, Equation (4.137);
cv specific heat capacity at constant volume, Equation (1.43);
C - specific heat capacity at constant pressure;
cp specifc heat capacity of species i at constant pressure;
Cv-• specific heat capacity of species i at constant volume;
D •energy of dissociation per unit molecular mass,

Equation (4.46);
Dij -diffusion coefficient for a multicomponent mixture,

Equation (1.53);
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- diffusion coefficient for a binary mixture,

Equation (1.59);
- effective diffusion coefficient, Equation (1.58);

- thermodiffusion coefficient;
-T turbulent diffusion coefficient, Equation (2.31);

Da - Damkohler number, Equation (4.102);

d - diameter of a sphere;

E - internal energy of a gas, Equation (1.38);

E 0 - energy of a gas at zero absolute temperature;

E - activation energy;

AE0 - dissociation energy per unit mole of starting substance,

Equation (4.22);

Eaw -activation energy for a surface reaction;
e - energy of the internal degrees of freedom of a molecule

of species i;
-fi distribution function;

F - function defined by Equations (3.77) and (3.92);
G - function defined by Equation (3.78);

gij - see Equation (1.16);

-giw -mass rate of formation of species i per unit area;
g i - statistical weight;

H - total enthalpy of a mixture, Equation (1.94);
H* = 6*/6**, form parameter;

h - enthalpy of a mixture, Equation (1.100);
hi - enthalpy of species i;

h0  -heat of formation of species i under standard conditions;
i

Hr - enthalpy of recovery;

h - Planck constant;

hiL - heat of sublimation of species i;

Ji - mass flux density vector of species i, Equation (1.10);

k - Boltzmann constant;

kT - thermodiffusive ratio, Equation (1.61);
Ki -- numerical rate of formation of the molecules of species

i per unit volume, Equation (1.27);
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K - see Equation (4.7),

p- see Equation (412) equilibrium constants;

Kx - see Equation (4.15),

Kc - see Equation (4.16)

kwi, kwj rates of forward and reverse surface reactions;

k', k" -- rates of reverse reactions in the gas phase;

Kw - equilibrium constant for the surface reaction;

kd -rate of dissociation;

k• k -rate of recombination;

I - collision integral;

i (U - see Equation (3.36);

L - characteristic length;

Lei - effective Lewis number, Equation (1.103);

Le - Lewis number for a binary mixture, Equation (1.105);

Let - tuirbulent Lewis number, Equation (2.34);

1 -- turbulent path of mixing;

Mi -. molecular weight of species i;

M - molecular weight of a mixture;

me - Mach number at the outer edge of the boundary layer;

mi - mass of a particle of species i;

ni - numerical density of particles of species i, Equation (1.1);

n - number of partioleF per unit volume, Equation (1.7);

EniJ ni/NA -- nui:tber of moles of species i per unit volume;

ni, n - order of forwardand reverse surface reactions;

NA - Avogadro number;

N - see Equation (3.82);

p -- pressure of a mixtureEquation (1.8);

P - partial pressare of species i, Equation (1.8);

p -d characteri.stic pressure of an ideally dissociating gas;

P - pressure tensor, Equations (1.12) and (1.64);

Pi pressure tensor of species i, Equation (1.11);
Pr - Prandtl number;

Prt -turbulent Prandtl number, Equation (2.33);

Q - partition function for a gas of unit pressure;
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Q - total partition function; see also Equation (3.181);

Qc - partition function for a gas of unit concentration;

Qi - kinetic energy flux density vector of species i,

Equation (1.13);

q - heat flux density vector, Equations (1.14) and (1.76);

qw - heat flux from the gas to the wall, Equation (2.88);
qs - heat flux inside the body, Equation (5.20);

R - universal gas constants;
4 4•

Re* -- Reynolds number constructed from the displacement

thickness, Equation (3.43);

Re** Reynolds number, constructed from the momentum loss

thickness, Equation (3.17);

Re x Reynolds number constructed from the parameters at the

outer edge of the boundary layer, Equation (3.18);

r - radius vectors with components x, y, z;

rw - radius of lateral curvature of a body of revolution;

Sct - turbulent Schmidt number, Equation (2.36);
Sc - Schmidt number for a binary mixture, Equation (1.105);

Sci - effective Schmidt number, Equation (1.103);

S - strain rate tensor, Equation (1.67);

T - gas temperature, Equation (1.8);

Td - characteristic dissociation temperature;

Tr - characteristic rotational temperature and temperature of

recovery;

T v - characteristic vibrational temperature;

t - time;

vi - velocity of a particle of species i (components ",.',•);

v - c(nter-of-mass velocity, Equation (1.4);

v i - mean velocity of particles of species i, Equation (1.3);

V i - thermal velocity of particle of species i, Equation (1.5);
S1  - rate of diffusion of species i, Equations (1.6) and (1.53);
v. - dynamic velocity, Equation (3.8);

u - longitudinal velocity component;

wI - mass rate of formation of species i. Equation (1.30);
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W - active portion of a catalytic surface;

x - x-component of vector r;

x -- molar concentration;

I X -- catalytic molecule.

Greek Letters

O a -- universal turbulence constant, Equation (3.102);

B -- see Equations (3.48) and (3.49);

-- see Equation (4.117);

Yw - catalytic capacity of the wall, Equation (4.61);

S* - displacement thickness, Equation (2.77);

6** -- momentum loss thickness, Equation (2.76);

6 - boundary layer thickness, Equation (5.53);

-* - energy loss thickness, Equation (2.89);

C - turbulent viscosity coefficient, Equation (2.30);

E - unit tensor) Equation (1.66);
C - friction parameter, Equation (3.8);
S- universal coordinate, Equation (3.8);

- coordinate of the boundary of the laminar sublayer;

K - universal turbulence constant (K * 0.4), Equation (2.69);

X - molecular heat conductivity coefficient;

At - turbulent heat conductivity coefficient, Equation (2.32);

Xeaf - effective heat conductivity coefficient, Equation (1.82);

AR - coefficient of heat conductivity due to mass transfer,

Equation (1.81);

s ---dynamic viscosity coefficient;

V kinematic viscosity coefficient;

V9M vk -- stoichiometric reaction coefficients, Equation (4.1);

C ---Crocco variable, Equation (2.59);

01 - partial density of species i, Equation (1.8);

p - gas denslty, Equation (1.8);

od -characterltic. density ot a partially excited dissociating

gas, Equation (4.50);
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characteristic density of an ideally dissociating gas,
dL

Equation (4.51);

o .see Equation (4.20);*1~ t -- stress of friction;
universal coordinate, Equation (3.8);

- see Equation (3.34);

- flux density vector, Equation (1.9);

- summation invariants, Equation (1.21);

'' -- see Equation (3.25);

-- see Equations (3.48) and (3.49);

- see Equation (3.196).

Subscripts

e - parameters at the outer edge of the boundary layer;

w - parameters at the wall;

s - parameters at the stagnation point;

, -- parameters at infinity in the oncoming flow;

0 - parameters in an incompressible fluid, as well as parameters

for no injection;

r - parameters ir the absence of heat transfer between the gas

and the wall;

- parameters at the boundary of the laminar sublayer;

t -- parameters In the turbulent core;

t-- parameters at the point of transition of laminar flow

into turbulent flow.

(e) - eqailibrium flow;

(f) - frozen flow;

(ne)- nonequilibrium flow;

line above signifies: In Chapter I - statistical

averaging over velocities, Equation (1.2); in Chapter II

- time averaging, Equation (2.2); in Chapter IlI- V -

dimensionless quantities.t! PTD.-UlC-2•3.-72•3-71 3310



SYMBOL LIST

Russian Typeq Meaning

* 34* eff effeotlve

T t T-urbulent
H n not defined

OnP def defining
3iicn exp e xperiment

803A air air
A laminar
CP av average

TeOP theory theory
n p1 plane
nOTOH flow of flow

chem chemical

4IT Ith laminar-thermal
AA- ld laminar-diffusive
fnPeA lim limiting
T th thermal
A d ditfusive
SH K boiling

'4

[ I P~~IriD-He-?•3-7?•3-?1 !l


